AB INITIO MOLECULAR DYNAMICS

lain Bethune (ibethune@epcc.ed.ac.uk)

Ab Initio Molecular Dynamics

- Background
 - Review of Classical MD
- Essential Quantum Mechanics
 - Born-Oppenheimer Molecular Dynamics
- Basics of Density Functional Theory
 - Performance Implications

Background

• Code Usage on ARCHER (2014-15) by CPU Time:

Rank	Code	Node hours	Method
1	VASP	5,443,924	DFT
3	CP2K	2,121,237	DFT
4	CASTEP	1,564,080	DFT
9	LAMMPS	887,031	Classical
10	ONETEP	805,014	DFT
12	NAMD	516,851	Classical
20	DL_POLY	245,322	Classical

 52% of all CPU time used by Chemistry / Materials Science / Biomolecular Simulation

Image from Karlsruhe Institute of Technology (http://www.hiu.kit.edu/english/104.php)

Classical Atomistic Simulation

- The main elements of the simulation model are:
- Particles
- Force field
 - Pair potentials
 - Three-body
 - Four-body

Classical Atomistic Simulation

- Molecular Dynamics
 - Newton's 2nd Law

$$F = ma$$

• Integrate using e.g. Velocity Verlet algorithm

$$r(t), \dot{r}(t) \rightarrow r(t + \delta t), \dot{r}(t + \delta t)$$

- Structural/Geometry Optimisation
 - Minimise total energy w.r.t. atomic positions

Classical Atomistic Simulation

- Successes:
 - Computationally cheap and parallelises well (> 1,000,000,000 atoms on 10,000 cores)
 - Able to predict mechanical properties
 - Density, elasticity, compressability, heat capacity (of insulators)
 - Can predict structure
 - RDF of crystals, local ordering in liquids, protein folding ...
- Failures:
 - Anything involving electron transfer (i.e. all of Chemistry!)
 - Bonding, electrochemistry
 - Heat capacity of metals
 - Electronic structure/conductivity
 - Magnetic properties
 - etc.

- We need a model which can describe electrons...
- ... so turn to Quantum Mechanics the Physics of the very small.
 - Thanks to Planck, Heisenberg, Einstein, Schrödinger et al, 1920s
- No longer think of point particles

• Instead, particles are described by a wave-function:

 $\Psi(\vec{r},t)$ • No longer have defined positions but instead a probability distribution function:

 $|\Psi(\vec{r},t)|^2$

- The central equation(s) of Quantum Mechanics is(are) the Schrödinger's Equation(s)
- In the general, time-dependent form:

$$\hat{H}\Psi(\vec{r},t) = i\hbar\frac{\partial}{\partial t}\Psi(\vec{r},t)$$

 Wavefunctions which are 'stationary states' (the PDF is not time dependent) are described by the timeindependent SE:

 For atomistic simulation, we typically have many atoms, each with many electrons, so the wavefuction depends on *all* the atomic and electronic coordinates (and time):

$$\Psi(\vec{R}_1, \vec{R}_2, ..., \vec{R}_N, \vec{r}_1, \vec{r}_2, ..., \vec{r}_n, t)$$

- This many-body wavefunction is a non-trivial (and unknown) coupling between all the particles in our system
- Too hard to deal with directly, so start making approximations...

The Born-Oppenheimer approximation (1927)

- Nuclei are *much* more massive than electrons and move much slower (by ~10³-10⁵ times)
- So we can consider the nuclei to be fixed at some particular time *t* and solve the Time-Independent Schrödinger Equation for the electronic system in an external potential created by the nuclei:

$$\Psi(\vec{R}_{1},\vec{R}_{2},...,\vec{R}_{N},\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{n},t)$$

Born-Oppenheimer Molecular Dynamics

- Solve the TISE for the electronic system to get a total electronic energy as a function of the nuclear coordinates
- Then evolve the nuclear system with the electronic energy acting as a potential i.e. $E(\vec{R}_{I}) \rightarrow \vec{F}_{I} = \frac{\partial E(\vec{R}_{I})}{\partial \vec{R}_{I}}$

 Can also apply all of our techniques from classical atomistic simulation to get structures, dynamics, mechanical properties ...

- First attempt, guess many-particle wave function is a linear combination of products (Slater Determinant) of single-particle wave functions (Hartree & Fock, 1935)
 - First practical implementation in 1969 (Gaussian 70)
 - Led to Nobel Prize in Chemistry (1998) for John Pople
 - Computationally demanding
 - So limited to relatively small numbers of atoms (~10-100)
- H-F methods are often referred to as 'wave function theory'
 - Even with the H-F ansatz, the many-particle wave function is still too complicated for practical use, so we make further simplifications...

- Hohenberg-Kohn Theorems (1964)
 - All of the terms in the Hamiltonian that appears in the TISE can be expressed (uniquely) as functionals of the electron density
 - The energy of the system is variational with respect to the density
- Kohn-Sham Method (1965)
 - Instead of the the many-body system of interacting electrons, define a set of 'KS-orbitals' (c.f. wavefunctions) of fictitious, non-interacting electrons moving in an effective potential:

$$V_{KS}(\vec{r}) = V_{ext}(\vec{r}) + V_H(n(\vec{r})) + V_{XC}(n(\vec{r}))$$

- Then the orbitals which satisfy the K-S Equations (c.f. Schrödinger Eq) give the same density as the interacting system!
- All the electron-electron interactions are included in the exchange-correlation potential
- NB: effective potential depends on the density, which depends on the potential

DFT: Approximations and Theory

- KS-DFT Algorithm:
 - a.k.a. Self-Consistent Field approach (SCF)

$$V_{KS}(\vec{r}) = V_{ext}(\vec{r}) + V_{H}(n(\vec{r})) + V_{XC}(n(\vec{r}))$$

$$\left[-\frac{1}{2}\nabla^2 + V_{KS}(\vec{r})\right]\phi_i(\vec{r}) = \varepsilon_i\phi_i(\vec{r})$$

 $n(\vec{r}) = \sum_{i} \left| \phi_i(\vec{r}) \right|^2$

archer

- Many implementation choices to be made in how the KS orbitals are represented and different methods for solving the KS equations
 - Usually expanded in terms of a basis set:
 - Plane Waves (VASP, CASTEP, Quantum ESPRESSO, ABINIT)
 - Localised Functions e.g. Gaussians, Wavelets (CRYSTAL, ADF, BigDFT)
 - Numerical Basis (CONQUEST, SIESTA)
 - Combinations (CP2K, GPAW)
- Over 70(!) are listed on <u>http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-</u> <u>state_physics_software</u>

- Performance:
 - Often cubic scaling O(N³) with number of basis functions
 - Especially with Plane Wave basis sets
 - Due to matrix diagonalisation required to solve K-S equations
 - Growing number of 'linear scaling' O(N) codes which take advantage of localised basis functions
 - Still a huge prefactor compared with classical MD

- Example molecular dynamics of forsterite (Mg₂SiO₄)
 - Using ARCHER and CP2K 2.6
- Classical MD
 - Morse-type pair potentials + SPME Electrostatics
 - 28,000 atoms, NPT, 1fs timestep
 - 1 ps = 2 mins on 24 cores
- Ab-initio MD
 - Production-quality basis sets
 - 28 atoms, NPT, 0.5 fs timestep
 - 1 ps = 36 mins on 48 cores over 10,000 times slower!

Figure 1. Performance of H2O-32 up to H2O-2048 benchmarks on Cray XT3 (2005) and Cray XC30 (2013)

Summary

- With care:
 - "First-principles methods may be used for subtle, elegant and accurate computer experiments and insight into the structure and behaviour of matter.", K. Refson

Summary

- Without care:
 - "First-principles results may be worthless nonsense", K. Refson

Summary

- Ab initio MD offers the ability to calculate dynamics based on forces which are not parameterised for particular systems
 No transferability problem compared to classical MD
- The approximations involved are mathematical, rather than physical
 - Bonding, charge transfer, polarisation emerge from the model rather than being imposed
- Even with efficient DFT codes, still several orders of magnitude slower than classical MD
 - Forces smaller system sizes, finite size effects?
- Possible to couple DFT and classical QM/MM
 - DFT only for an 'active region', rest of system uses forcefield

