
 
 

Advanced OpenMP 
 
 
 

Lecture 4: OpenMP and MPI 



Motivation 

•  In recent years there has been a trend towards clustered architectures  

•  Distributed memory systems, where each node consist of a traditional 
shared memory multiprocessor (SMP). 
–  with the advent of multicore chips, every cluster is like this  

•  Single address space within each node, but separate nodes have 
separate address spaces.   



Clustered architecture 



Programming clusters 

•  How should we program such a machine?  

•  Could use MPI across whole system 

•  Cannot (in general) use OpenMP/threads across whole 
system 
–  requires support for single address space 
–  this is possible in software, but inefficient 
–  also possible in hardware, but expensive 

•  Could use OpenMP/threads within a node and MPI between 
nodes 
–  is there any advantage to this?  



Issues 

 

We need to consider:  

 

•  Development / maintenance  costs 

•  Portability 

•  Performance 



Development / maintenance 

•  In most cases, development and maintenance will be harder 
than for an MPI code, and much harder than for an OpenMP 
code.  

•  If MPI code already exists, addition of OpenMP may not be 
too much overhead. 

•  In some cases, it may be possible to use a simpler MPI 
implementation because the need for scalability is reduced.  
–  e.g. 1-D domain decomposition instead of 2-D  



Portability 

•  Both OpenMP and MPI are themselves highly portable (but 
not perfect).  

•  Combined MPI/OpenMP is less so 
–  main issue is thread safety of MPI  
–  if maximum thread safety is assumed, portability will be reduced 

•  Desirable to make sure code functions correctly (maybe with 
conditional compilation) as stand-alone MPI code (and as 
stand-alone OpenMP code?) 



Thread Safety 

•  Making libraries thread-safe can be difficult 
–  lock access to data structures 
–  multiple data structures: one per thread 
–  … 

•  Adds significant overheads 
–  which may hamper standard (single-threaded) codes 

•  MPI defines various classes of thread usage 
–  library can supply an appropriate implementation 
–  see later 



Performance 

Four possible performance reasons for mixed OpenMP/MPI 
codes: 

1.  Replicated data 

2.  Poorly scaling MPI codes 

3.  Limited MPI process numbers 

4.  MPI implementation not tuned for SMP clusters 



Replicated data 

•  Some MPI codes use a replicated data strategy 
–  all processes have a copy of a major data structure 
–  classical domain decomposition code have replication in halos 
–  MPI buffers can consume significant amounts of memory 

•  A pure MPI code needs one copy per process/core. 

•  A mixed code would only require one copy per node 
–  data structure can be shared by multiple threads within a process 
–  MPI buffers for intra-node messages no longer required 

•  Will be increasingly important 
–  amount of memory per core is not likely to increase in future 

•  Halo regions are a type of replicated data 
–  can become significant for small domains (i.e. many processes) 



Effect of domain size on halo storage 

Local domain size Halos % of data in halos 

503 = 125000 523 – 503 = 15608 11% 

203 = 8000 223 – 203 = 2648 25% 

103 = 1000 123 – 103 = 728 42% 

•  Typically, using more processors implies a smaller domain 
size per processor  
–  unless the problem can genuinely weak scale 

•  Although the amount of halo data does decrease as the local 
domain size decreases, it eventually starts to occupy a 
significant amount fraction of the storage 
–  even worse with deep halos or >3 dimensions  



Poorly scaling MPI codes 

•  If the MPI version of the code scales poorly, then a mixed 
MPI/OpenMP version may scale better. 

•  May be true in cases where OpenMP scales better than MPI 
due to:  

    1. Algorithmic reasons. 
–  e.g. adaptive/irregular problems where load balancing in MPI is 

difficult. 

    2. Simplicity reasons  
–  e.g. 1-D domain decomposition 



Load balancing 

•  Load balancing between MPI processes can be hard 
–  need to transfer both computational tasks and data from overloaded 

to underloaded processes 
–  transferring small tasks may not be beneficial  
–  having a global view of loads may not scale well 
–  may need to restrict to transferring loads only between neighbours 

•  Load balancing between threads is much easier 
–  only need to transfer tasks, not data 
–  overheads are lower, so fine grained balancing is possible  
–  easier to have a global view 

•  For applications with load balance problems, keeping the 
number of MPI processes small can be an advantage 



Limited MPI process numbers 

•  MPI library implementation may not be able to handle 
millions of processes adequately. 
–  e.g. limited buffer space 
–  Some MPI operations are hard to implement without O(p) 

computation, or O(p) storage in one or more processes 
–  e.g. AlltoAllv, matching wildcards 

•  Likely to be an issue on very large systems. 

•  Mixed MPI/OpenMP implementation will reduce number of 
MPI processes. 



MPI implementation not tuned for SMP clusters 

•  Some MPI implementations are not well optimised for SMP 
clusters 
–  less of a problem these days 

•  Especially true for collective operations (e.g. reduce, alltoall) 

•  Mixed-mode implementation naturally does the right thing 
–  reduce within a node via OpenMP reduction clause 
–  then reduce across nodes with MPI_Reduce 

•  Mixed-mode code also tends to aggregate messages 
–  send one large message per node instead of several small ones 
–  reduces latency effects, and contention for network injection  



Styles of mixed-mode programming 

•  Master-only 
–  all MPI communication takes place in the sequential part of the 

OpenMP program (no MPI in parallel regions) 

•  Funneled  
–  all MPI communication takes place through the same (master) thread 
–  can be inside parallel regions 

•  Serialized 
–  only one thread makes MPI calls at any one time 
–  distinguish sending/receiving threads via MPI tags or communicators 
–  be very careful about race conditions on send/recv buffers etc. 

•  Multiple 
–  MPI communication simultaneously in more than one thread 
–  some MPI implementations don’t support this 
–  …and those which do mostly don’t perform well 



OpenMP Master-only 

!$OMP parallel 

 work… 

!$OMP end parallel 

 

call MPI_Send(…) 

 

!$OMP parallel 

 work… 

!$OMP end parallel 

#pragma omp parallel 

{ 

   work… 

} 

ierror=MPI_Send(…); 

#pragma omp parallel 

{ 

   work…  

} 

Fortran C 



OpenMP Funneled 

!$OMP parallel 

… work 

!$OMP barrier 

!$OMP master 

  call MPI_Send(…) 

!$OMP end master 

!$OMP barrier 

.. work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp barrier 

  #pragma omp master 

  {   

    ierror=MPI_Send(…); 

  } 

 #pragma omp barrier 

 … work 

} 

Fortran C 



OpenMP Serialized 

!$OMP parallel 

… work 

!$OMP critical 

  call MPI_Send(…) 

!$OMP end critical 

… work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work 

  #pragma omp critical 

  {   

    ierror=MPI_Send(…); 

  } 

 … work 

} 

Fortran C 



OpenMP Multiple 

!$OMP parallel 

… work 

call MPI_Send(…) 

… work 

!$OMP end parallel 

#pragma omp parallel 

{ 

 … work  

  ierror=MPI_Send(…); 

 … work 

} 

Fortran C 



MPI_Init_thread 

•  MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on 
the main thread. 

•  It has two integer arguments: 
–  Required ([in] Level of desired thread support ) 
–  Provided ([out] Level of provided thread support) 

•  C syntax 

int MPI_Init_thread(int *argc, char *((*argv)[]), int 
required, int *provided); 

 

•  Fortran syntax 
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR) 

  INTEGER REQUIRED, PROVIDED, IERROR 

 



MPI_Init_thread 

•  MPI_THREAD_SINGLE 
–  Only one thread will execute.  

•  MPI_THREAD_FUNNELED 
–  The process may be multi-threaded, but only the main thread will make 

MPI calls (all MPI calls are funneled to the main thread).  

•  MPI_THREAD_SERIALIZED 
–  The process may be multi-threaded, and multiple threads may make 

MPI calls, but only one at a time: MPI calls are not made concurrently 
from two distinct threads (all MPI calls are serialized).  

•  MPI_THREAD_MULTIPLE 
–  Multiple threads may call MPI, with no restrictions. 



MPI_Init_thread 

•  These integer values are monotonic; i.e.,  
–  MPI_THREAD_SINGLE  <  MPI_THREAD_FUNNELED       

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE 

•  Note that these values do not strictly map on to the 
four MPI/OpenMP Mixed-mode styles as they are 
more general (i.e. deal with Posix threads where we 
don’t have “parallel regions”, etc.) 
–  e.g. no distinction here between Master-only and Funneled 
–  see MPI standard for full details 



MPI_Query_thread() 
•  MPI_Query_thread() returns the current level of thread support 

–  Has one integer argument: provided [in] as defined for MPI_Init_thread()  
 

•  C syntax 
int MPI_query_thread(int *provided); 

•  Fortran syntax 
MPI_QUERY_THREAD(PROVIDED, IERROR) 

  INTEGER PROVIDED, IERROR 

 

•  Need to compare the output manually, i.e. 
If (provided < requested) { 

 printf(“Not a high enough level of thread support!\n”); 

 MPI_Abort(MPI_COMM_WORLD,1) 

    …etc. 

} 

 

 



Pitfalls 

•  The OpenMP implementation may introduce additional overheads not 
present in the MPI code (e.g. synchronisation, false sharing, sequential 
sections). 

•  The mixed implementation may require more synchronisation than a pure 
OpenMP version, if non-thread-safety of MPI is assumed. 

•  Implicit point-to-point synchronisation may be replaced by (more 
expensive) barriers.  

•  In the pure MPI code, the intra-node messages will often be naturally 
overlapped with inter-node messages 

–  harder to overlap inter-thread communication with inter-node messages. 

•  NUMA effects can limit the scalability of OpenMP: it may be 
advantageous to run one MPI process per NUMA domain, rather than 
one MPI process per node. 

–  process placement becomes very important  



Master-only 

•  Advantages 
–  simple to write and maintain  
–  clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism 
–  no concerns about synchronising threads before/after sending 

messages 

•  Disadvantages 
–  threads other than the master are idle during MPI calls 
–  all communicated data passes through the cache where the master 

thread is executing. 
–  inter-process and inter-thread communication do not overlap. 
–  only way to synchronise threads before and after message transfers 

is by parallel regions which have a relatively high overhead. 
–  packing/unpacking of derived datatypes is sequential. 



Example 

 

      DO I=1,N 

         A(I) = B(I) + C(I) 

      END DO 

       

      CALL MPI_BSEND(A(N),1,.....) 

      CALL MPI_RECV(A(0),1,.....)  

 

 

      DO I = 1,N 

         D(I) = A(I-1) + A(I)  

      END DO  

!$omp parallel do 

!$omp parallel do 

Intra-node messages 
overlapped with inter-
node 

Inter-thread communication 
occurs here 

Implicit barrier added here 
* nthreads 

* nthreads 



Funneled 

•  Advantages 
–  relatively simple to write and maintain  
–  cheaper ways to synchronise threads before and after message 

transfers 
–  possible for other threads to compute while master is in an MPI call 

•  Disadvantages 
–  less clear separation between outer (MPI) and inner (OpenMP) levels 

of parallelism 
–  all communicated data still passes through the cache where the 

master thread is executing. 
–  inter-process and inter-thread communication still do not overlap. 



OpenMP Funneled with overlapping (1) 

Can’t using  
worksharing here! 



OpenMP Funneled with overlapping (2) 

Higher overheads and  
harder to synchronise  

between teams 



Serialised 

•  Advantages 
–  easier for other threads to compute while one is in an MPI call 
–  can arrange for threads to communicate only their “own” data (i.e. the 

data they read and write).  

•  Disadvantages 
–  getting harder to write/maintain 
–  more, smaller messages are sent, incurring additional latency 

overheads 
–  need to use tags or communicators to distinguish between messages 

from or to different threads in the same MPI process.   



Distinguishing between threads 

•  By default, a call to MPI_Recv by any thread in an MPI 
process will match an incoming message from the sender.  

•  To distinguish between messages intended for different 
threads, we can use MPI tags 
–  if tags are already in use for other purposes, this gets messy 

•  Alternatively, different threads can use different MPI 
communicators 
–  OK for simple patterns, e.g. where thread N in one process only ever 

communicates with thread N in other processes 
–  more complex patterns also get messy 



Multiple 

•  Advantages 
–  Messages from different threads can (in theory) overlap  

– many MPI implementations serialise them internally. 
–  Natural for threads to communicate only their “own” data 
–  Fewer concerns about synchronising threads (responsibility passed to 

the MPI library)  

•  Disdavantages 
–  Hard to write/maintain 
–  Not all MPI implementations support this – loss of portability 
–  Most MPI implementations don’t perform well like this 

–  Thread safety implemented crudely using global locks. 



End points 

•  A possible solution to permit more easier use and efficient 
implementations of Multiple is to extend MPI so that an MPI 
rank may have multiple source and destination identifiers 
(end points) 

•  e.g. if we want 4 threads per MPI process we could create an 
MPI communicator with 4 end points per rank 
–  each thread can use a different end point 

•  Avoids need to use tags to identify threads 

•  Currently under discussion in MPI Forum 
–  might appear in MPI 4.0?  



Performance 

•  Conceptually easy to write 
–  rather messy 
–  hard to get good performance: cannot just concentrate on key kernels 

P P P P P P P P P P P P 

MPI MPI + OpenMP 



Consequences 

Performance 

Developer Time 



Summary 

•  Hybrid programming still a major current research topic 

•  Many see it as the key to exascale, however … 
–  will require MPI_THREAD_MULTIPLE style to avoid synchronisation 
–  ... and end points to make this usable?  

•  Achieving correctness is hard 
–  have to consider race conditions on messages 

•  Achieving performance is hard 
–  entire application must be threaded (efficiently!) 

•  Must optimise choice of 
–  numbers of processes/threads 
–  placement of processes/threads on NUMA architectures 

 


