

Advanced OpenMP

Lecture 4: OpenMP and MPI

Motivation

•  In recent years there has been a trend towards clustered architectures

•  Distributed memory systems, where each node consist of a traditional
shared memory multiprocessor (SMP).
–  with the advent of multicore chips, every cluster is like this

•  Single address space within each node, but separate nodes have
separate address spaces.

Clustered architecture

Programming clusters

•  How should we program such a machine?

•  Could use MPI across whole system

•  Cannot (in general) use OpenMP/threads across whole
system
–  requires support for single address space
–  this is possible in software, but inefficient
–  also possible in hardware, but expensive

•  Could use OpenMP/threads within a node and MPI between
nodes
–  is there any advantage to this?

Issues

We need to consider:

•  Development / maintenance costs

•  Portability

•  Performance

Development / maintenance

•  In most cases, development and maintenance will be harder
than for an MPI code, and much harder than for an OpenMP
code.

•  If MPI code already exists, addition of OpenMP may not be
too much overhead.

•  In some cases, it may be possible to use a simpler MPI
implementation because the need for scalability is reduced.
–  e.g. 1-D domain decomposition instead of 2-D

Portability

•  Both OpenMP and MPI are themselves highly portable (but
not perfect).

•  Combined MPI/OpenMP is less so
–  main issue is thread safety of MPI
–  if maximum thread safety is assumed, portability will be reduced

•  Desirable to make sure code functions correctly (maybe with
conditional compilation) as stand-alone MPI code (and as
stand-alone OpenMP code?)

Thread Safety

•  Making libraries thread-safe can be difficult
–  lock access to data structures
–  multiple data structures: one per thread
–  …

•  Adds significant overheads
–  which may hamper standard (single-threaded) codes

•  MPI defines various classes of thread usage
–  library can supply an appropriate implementation
–  see later

Performance

Four possible performance reasons for mixed OpenMP/MPI
codes:

1.  Replicated data

2.  Poorly scaling MPI codes

3.  Limited MPI process numbers

4.  MPI implementation not tuned for SMP clusters

Replicated data

•  Some MPI codes use a replicated data strategy
–  all processes have a copy of a major data structure
–  classical domain decomposition code have replication in halos
–  MPI buffers can consume significant amounts of memory

•  A pure MPI code needs one copy per process/core.

•  A mixed code would only require one copy per node
–  data structure can be shared by multiple threads within a process
–  MPI buffers for intra-node messages no longer required

•  Will be increasingly important
–  amount of memory per core is not likely to increase in future

•  Halo regions are a type of replicated data
–  can become significant for small domains (i.e. many processes)

Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

•  Typically, using more processors implies a smaller domain
size per processor
–  unless the problem can genuinely weak scale

•  Although the amount of halo data does decrease as the local
domain size decreases, it eventually starts to occupy a
significant amount fraction of the storage
–  even worse with deep halos or >3 dimensions

Poorly scaling MPI codes

•  If the MPI version of the code scales poorly, then a mixed
MPI/OpenMP version may scale better.

•  May be true in cases where OpenMP scales better than MPI
due to:

 1. Algorithmic reasons.
–  e.g. adaptive/irregular problems where load balancing in MPI is

difficult.

 2. Simplicity reasons
–  e.g. 1-D domain decomposition

Load balancing

•  Load balancing between MPI processes can be hard
–  need to transfer both computational tasks and data from overloaded

to underloaded processes
–  transferring small tasks may not be beneficial
–  having a global view of loads may not scale well
–  may need to restrict to transferring loads only between neighbours

•  Load balancing between threads is much easier
–  only need to transfer tasks, not data
–  overheads are lower, so fine grained balancing is possible
–  easier to have a global view

•  For applications with load balance problems, keeping the
number of MPI processes small can be an advantage

Limited MPI process numbers

•  MPI library implementation may not be able to handle
millions of processes adequately.
–  e.g. limited buffer space
–  Some MPI operations are hard to implement without O(p)

computation, or O(p) storage in one or more processes
–  e.g. AlltoAllv, matching wildcards

•  Likely to be an issue on very large systems.

•  Mixed MPI/OpenMP implementation will reduce number of
MPI processes.

MPI implementation not tuned for SMP clusters

•  Some MPI implementations are not well optimised for SMP
clusters
–  less of a problem these days

•  Especially true for collective operations (e.g. reduce, alltoall)

•  Mixed-mode implementation naturally does the right thing
–  reduce within a node via OpenMP reduction clause
–  then reduce across nodes with MPI_Reduce

•  Mixed-mode code also tends to aggregate messages
–  send one large message per node instead of several small ones
–  reduces latency effects, and contention for network injection

Styles of mixed-mode programming

•  Master-only
–  all MPI communication takes place in the sequential part of the

OpenMP program (no MPI in parallel regions)

•  Funneled
–  all MPI communication takes place through the same (master) thread
–  can be inside parallel regions

•  Serialized
–  only one thread makes MPI calls at any one time
–  distinguish sending/receiving threads via MPI tags or communicators
–  be very careful about race conditions on send/recv buffers etc.

•  Multiple
–  MPI communication simultaneously in more than one thread
–  some MPI implementations don’t support this
–  …and those which do mostly don’t perform well

OpenMP Master-only

!$OMP parallel

 work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

 work…

!$OMP end parallel

#pragma omp parallel

{

 work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

 work…

}

Fortran C

OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

 call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp barrier

 #pragma omp master

 {

 ierror=MPI_Send(…);

 }

 #pragma omp barrier

 … work

}

Fortran C

OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

 call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp critical

 {

 ierror=MPI_Send(…);

 }

 … work

}

Fortran C

OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

 … work

 ierror=MPI_Send(…);

 … work

}

Fortran C

MPI_Init_thread

•  MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on
the main thread.

•  It has two integer arguments:
–  Required ([in] Level of desired thread support)
–  Provided ([out] Level of provided thread support)

•  C syntax

int MPI_Init_thread(int *argc, char *((*argv)[]), int
required, int *provided);

•  Fortran syntax
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

 INTEGER REQUIRED, PROVIDED, IERROR

MPI_Init_thread

•  MPI_THREAD_SINGLE
–  Only one thread will execute.

•  MPI_THREAD_FUNNELED
–  The process may be multi-threaded, but only the main thread will make

MPI calls (all MPI calls are funneled to the main thread).

•  MPI_THREAD_SERIALIZED
–  The process may be multi-threaded, and multiple threads may make

MPI calls, but only one at a time: MPI calls are not made concurrently
from two distinct threads (all MPI calls are serialized).

•  MPI_THREAD_MULTIPLE
–  Multiple threads may call MPI, with no restrictions.

MPI_Init_thread

•  These integer values are monotonic; i.e.,
–  MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

•  Note that these values do not strictly map on to the
four MPI/OpenMP Mixed-mode styles as they are
more general (i.e. deal with Posix threads where we
don’t have “parallel regions”, etc.)
–  e.g. no distinction here between Master-only and Funneled
–  see MPI standard for full details

MPI_Query_thread()
•  MPI_Query_thread() returns the current level of thread support

–  Has one integer argument: provided [in] as defined for MPI_Init_thread()

•  C syntax
int MPI_query_thread(int *provided);

•  Fortran syntax
MPI_QUERY_THREAD(PROVIDED, IERROR)

 INTEGER PROVIDED, IERROR

•  Need to compare the output manually, i.e.
If (provided < requested) {

 printf(“Not a high enough level of thread support!\n”);

 MPI_Abort(MPI_COMM_WORLD,1)

 …etc.

}

Pitfalls

•  The OpenMP implementation may introduce additional overheads not
present in the MPI code (e.g. synchronisation, false sharing, sequential
sections).

•  The mixed implementation may require more synchronisation than a pure
OpenMP version, if non-thread-safety of MPI is assumed.

•  Implicit point-to-point synchronisation may be replaced by (more
expensive) barriers.

•  In the pure MPI code, the intra-node messages will often be naturally
overlapped with inter-node messages

–  harder to overlap inter-thread communication with inter-node messages.

•  NUMA effects can limit the scalability of OpenMP: it may be
advantageous to run one MPI process per NUMA domain, rather than
one MPI process per node.

–  process placement becomes very important

Master-only

•  Advantages
–  simple to write and maintain
–  clear separation between outer (MPI) and inner (OpenMP) levels of

parallelism
–  no concerns about synchronising threads before/after sending

messages

•  Disadvantages
–  threads other than the master are idle during MPI calls
–  all communicated data passes through the cache where the master

thread is executing.
–  inter-process and inter-thread communication do not overlap.
–  only way to synchronise threads before and after message transfers

is by parallel regions which have a relatively high overhead.
–  packing/unpacking of derived datatypes is sequential.

Example

 DO I=1,N

 A(I) = B(I) + C(I)

 END DO

 CALL MPI_BSEND(A(N),1,.....)

 CALL MPI_RECV(A(0),1,.....)

 DO I = 1,N

 D(I) = A(I-1) + A(I)

 END DO

!$omp parallel do

!$omp parallel do

Intra-node messages
overlapped with inter-
node

Inter-thread communication
occurs here

Implicit barrier added here
* nthreads

* nthreads

Funneled

•  Advantages
–  relatively simple to write and maintain
–  cheaper ways to synchronise threads before and after message

transfers
–  possible for other threads to compute while master is in an MPI call

•  Disadvantages
–  less clear separation between outer (MPI) and inner (OpenMP) levels

of parallelism
–  all communicated data still passes through the cache where the

master thread is executing.
–  inter-process and inter-thread communication still do not overlap.

OpenMP Funneled with overlapping (1)

Can’t using
worksharing here!

OpenMP Funneled with overlapping (2)

Higher overheads and
harder to synchronise

between teams

Serialised

•  Advantages
–  easier for other threads to compute while one is in an MPI call
–  can arrange for threads to communicate only their “own” data (i.e. the

data they read and write).

•  Disadvantages
–  getting harder to write/maintain
–  more, smaller messages are sent, incurring additional latency

overheads
–  need to use tags or communicators to distinguish between messages

from or to different threads in the same MPI process.

Distinguishing between threads

•  By default, a call to MPI_Recv by any thread in an MPI
process will match an incoming message from the sender.

•  To distinguish between messages intended for different
threads, we can use MPI tags
–  if tags are already in use for other purposes, this gets messy

•  Alternatively, different threads can use different MPI
communicators
–  OK for simple patterns, e.g. where thread N in one process only ever

communicates with thread N in other processes
–  more complex patterns also get messy

Multiple

•  Advantages
–  Messages from different threads can (in theory) overlap

– many MPI implementations serialise them internally.
–  Natural for threads to communicate only their “own” data
–  Fewer concerns about synchronising threads (responsibility passed to

the MPI library)

•  Disdavantages
–  Hard to write/maintain
–  Not all MPI implementations support this – loss of portability
–  Most MPI implementations don’t perform well like this

–  Thread safety implemented crudely using global locks.

End points

•  A possible solution to permit more easier use and efficient
implementations of Multiple is to extend MPI so that an MPI
rank may have multiple source and destination identifiers
(end points)

•  e.g. if we want 4 threads per MPI process we could create an
MPI communicator with 4 end points per rank
–  each thread can use a different end point

•  Avoids need to use tags to identify threads

•  Currently under discussion in MPI Forum
–  might appear in MPI 4.0?

Performance

•  Conceptually easy to write
–  rather messy
–  hard to get good performance: cannot just concentrate on key kernels

P P P P P P P P P P P P

MPI MPI + OpenMP

Consequences

Performance

Developer Time

Summary

•  Hybrid programming still a major current research topic

•  Many see it as the key to exascale, however …
–  will require MPI_THREAD_MULTIPLE style to avoid synchronisation
–  ... and end points to make this usable?

•  Achieving correctness is hard
–  have to consider race conditions on messages

•  Achieving performance is hard
–  entire application must be threaded (efficiently!)

•  Must optimise choice of
–  numbers of processes/threads
–  placement of processes/threads on NUMA architectures

