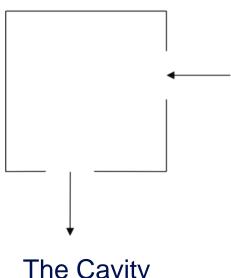
CFD example

Regular domain decomposition

Fluid Dynamics


- The study of the mechanics of fluid flow, liquids and gases in motion.
- Commonly requires HPC.
- Continuous systems typically described by partial differential equations.
- For a computer to simulate these systems, these equations must be discretised onto a grid.
- One such discretisation approach is the finite difference method.
- This method states that the value at any point in the grid is some combination of the neighbouring points

The Problem

- Determining the flow pattern of a fluid in a cavity
 - a square box
 - inlet on one side
 - outlet on the other

The Cavity

For simplicity, assuming zero viscosity.

The Maths

- In two dimensions, easiest to work with the stream function Ψ

$$\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} = 0$$

With finite difference form:

$$\Psi_{i-1,j} + \Psi_{i+1,j} + \Psi_{i,j-1} + \Psi_{i,j+1} - 4\Psi_{i,j} = 0$$

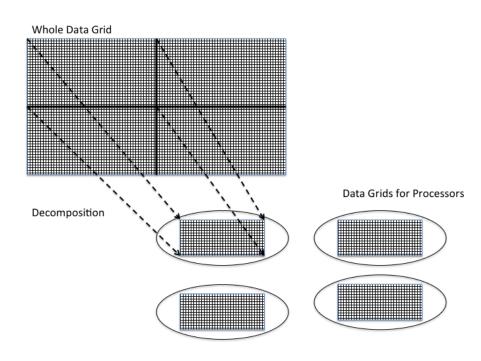
- Jacobi Method can be used to find solutions:
 - With boundary values fixed, stream function can be calculated for each point in the grid by averaging the value at that point with its four nearest neighbours.
 - Process continues until the algorithm converges on a solution which stays unchanged by the averaging.

The Maths

- In order to obtain the flow pattern of the fluid in the cavity we want to compute the velocity field: $oldsymbol{u}$
- The x and y components are related to the stream function by:

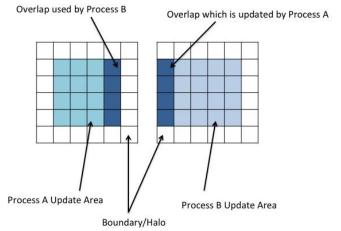
$$u_x = \frac{\partial \Psi}{\partial y} = \frac{1}{2} (\Psi_{i,j+1} - \Psi_{i,j-1})$$

$$u_y = -\frac{\partial \Psi}{\partial x} = \frac{1}{2} (\Psi_{i-1,j} - \Psi_{i+1,j})$$


- General approach is therefore:
 - Calculate the stream function.
 - Use this to calculate the two dimensions of the velocity.

Parallel Programming – Grids

- Both stages involve calculating the value at each grid point by combining it with the value of its neighbours.
- Same amount of work needed to calculate each grid point ideal for the regular domain decomposition approach.
- Grid is broken up into smaller grids for each processor.



Parallel Programming - Halo Swapping

- Points on the edge of a grid present a challenge. Required data is shipped to a remote processor. Processes must therefore communicate.
- Solution is for processor grid to have a boundary layer on adjoining sides.
- Layer is not writable by the local process.
- Updated by another process which in turn will have a boundary updated by the local process.
- Layer is generally known as a halo and the inter-process communication which ensures their data is correct and up to date is a halo swap.

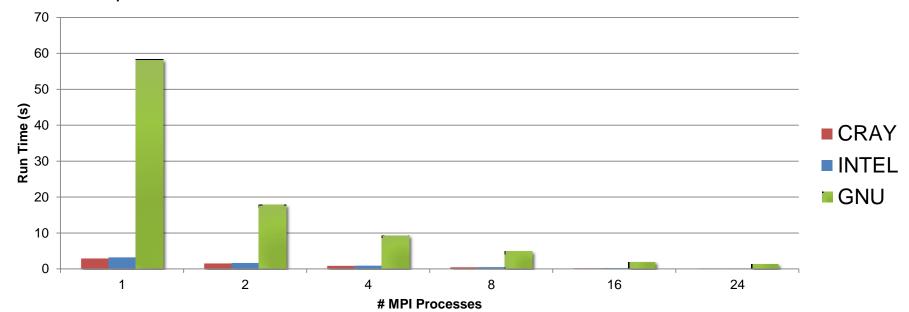
Characterising Performance

- Speed up (S) is how much faster the parallel version runs compared to a non-parallel version.
- Efficiency (E) is how effectively the available processing power is being used.

$$S = \frac{T_1}{T_N} \qquad E = \frac{S}{N} = \frac{T_1}{NT_N}$$

- Where:
 - $\cdot \, \, N$ number of processors
 - $\cdot T_1$ time taken on 1 processor
 - \cdot T_N time taken on N processors

Practical


- Compile and run the code on ARCHER
 - on different numbers of cores
 - for different problem sizes
- Will return to this later to study compiler optimisation
 - following slides are for interest only

Compiler Implementation and Platform

- Three compilers on ARCHER: Cray, Intel and GNU.
- Cray and Intel: more optimisations on by default, likely to give more performance out-of-thebox.
- ARCHER is a Cray system using Intel processors. Cray compiler tuned for the platform,
 Intel compiler tuned for the hardware.

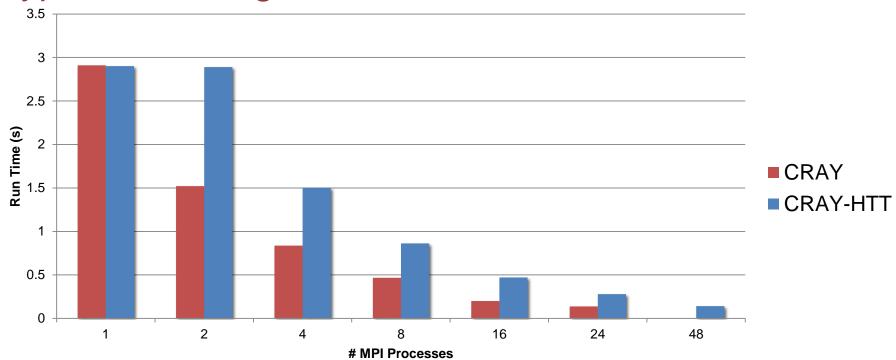
GNU compiler likely to require additional compiler options...

Compiler Optimisation Options

- Flags for the compiler. Can be set on the command line or in the Makefile.
- Standard levels:
 - O3 Aggressive
 - O2 Suggested
 - O Conservative
 - O0 Off (for debugging)
- Finer tuning available. Details in compiler man pages.
- Higher levels aren't always better. Increased code size from some optimisations may negatively impact cache interactions.
- Can increase compilation time.

Hyper-Threading

- Intel technology designed to increase performance using simultaneous multi-threading (SMT) techniques.
- Presented as one additional logical core per physical one on the system.
- Each ARCHER node therefore reports a total of 48 available processors (can be confirmed by checking /proc/cpuinfo).
- Must be explicitly requested with the "-j 2" option:


```
#PBS -l select=1
aprun -n 48 -j 2 ./myMPIProgram
```

- Hyper-Threading doubles the number of available parallel units per node at no additional resource cost.
- However, performance effects are highly dependent on the application...

Hyper-Threading Performance

- Can have a positive or negative effect on run times.
- Hyper-Threading is a bad idea for the CFD problem.
- Experimentation is key to determining if this technique would be suitable for your code.

Process Placement

- ARCHER is a NUMA system processors access different regions of memory at different speeds.
- Compute nodes have two NUMA regions one for each CPU. Hence 12 cores per region.
- It may be desirable to control which NUMA regions processes are assigned to.
- For example, with hyrbid MPI and OpenMP jobs, it is suggested that
 processes are placed such that shared-memory threads in the same
 team access the same local memory.
- Can be controlled with aprun flags such as:
 - -N [parallel processes per node]
 - -S [parallel processes per NUMA region]
 - -d [threads per parallel process]

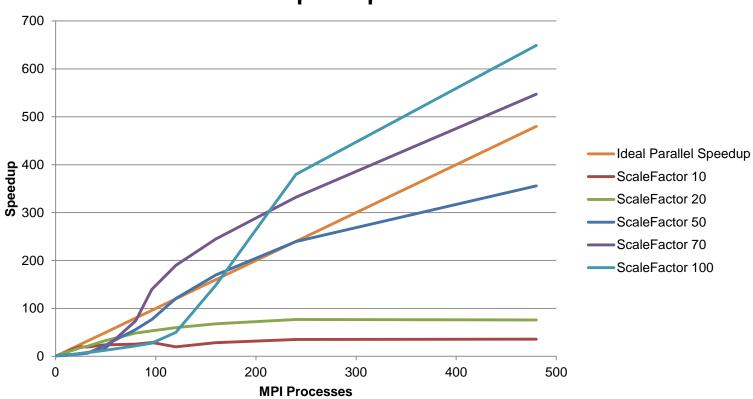
Parallel Scaling – Number of Processors

- Addition of parallel resources subject to diminishing returns.
- Depends on scalability of underlying algorithms.
- Any sources of inefficiency are compounded at higher numbers of processes.
- In the CFD example, run time can become dominated by MPI communications rather than actual processing work.

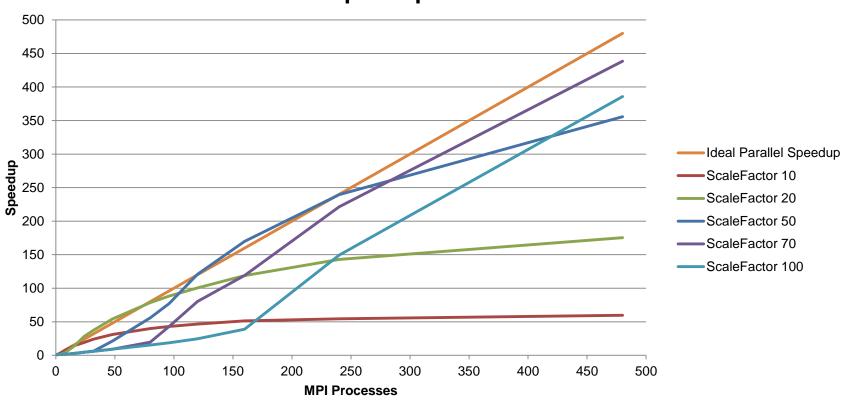
CFD Code	Iterations: 10,000	Scale Factor: 40	Reynolds number: 2
MPI procs	Time	Speedup	Efficiency
1	100.5	1.00	1.00
2	53.61	1.87	0.94
4	35.07	2.87	0.72
8	31.34	3.21	0.40
16	17.81	5.64	0.35

Parallel Scaling – Problem Size

- Problem scale affects memory interactions notably cache accesses.
- Additional processors provide additional cache space.
- Can lead to more, or even all, of a program's working set being available at the cache level.
- Configurations that achieve this will show a sudden efficiency "spike".


CFD Code	Iteration	s: 10000	Scale Fac	etor: 70	
MPI procs	Time		Speedup	Efficiency	
	1	331.34	1	1.00	1.00
	48	23.27	7	14.24	0.30
	96	2.37	7	139.61	1.45

2x the number of MPI processes gives ~9.8x the speed up.


CFD Speedup on ARCHER

CFD Speedup on HECToR

MPI procs Time Speedup Efficiency 1 2.91 1.00 1.00 1 11.92 1.00 2 1.52 1.91 0.96 2 6.21 1.92 4 0.84 3.47 0.87 4 3.38 3.52 8 0.47 6.22 0.78 8 1.86 6.41 16 0.20 14.46 0.90 16 1.00 11.91 24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	1.00 0.96 0.88 0.80 0.74 0.73 0.66 0.67
2 1.52 1.91 0.96 2 6.21 1.92 4 0.84 3.47 0.87 4 3.38 3.52 8 0.47 6.22 0.78 8 1.86 6.41 16 0.20 14.46 0.90 16 1.00 11.91 24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.96 0.88 0.80 0.74 0.73 0.66 0.67 0.61
4 0.84 3.47 0.87 4 3.38 3.52 8 0.47 6.22 0.78 8 1.86 6.41 16 0.20 14.46 0.90 16 1.00 11.91 24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.88 0.80 0.74 0.73 0.66 0.67 0.61
8 0.47 6.22 0.78 8 1.86 6.41 16 0.20 14.46 0.90 16 1.00 11.91 24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.80 0.74 0.73 0.66 0.67 0.61
16 0.20 14.46 0.90 16 1.00 11.91 24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.74 0.73 0.66 0.67 0.61
24 0.15 19.92 0.83 24 0.68 17.52 32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.73 0.66 0.67 0.61
32 0.15 19.45 0.61 32 0.57 21.03 48 0.12 23.90 0.50 48 0.37 31.95	0.66 0.67 0.61
48 0.12 23.90 0.50 48 0.37 31.95	0.67 0.61
	0.61
00 044 05 00 000 00 00 00 00 00	
80 0.11 25.63 0.32 80 0.25 48.43	
96 0.10 28.95 0.30 96 0.22 53.17	0.55
120 0.15 19.78 0.16 120 0.20 59.86	0.50
160 0.10 28.36 0.18 160 0.18 67.90	0.42
240 0.08 35.14 0.15 240 0.16 76.77	0.32
480 0.08 35.87 0.07 480 0.16 75.94	0.16
HECToR-ScaleFactor 10 HECToR-ScaleFactor 20	
MPI procs Time Speedup Efficiency MPI procs Time Speedup Efficiency	
1 8.91 1.00 1.00 1 48.42 1.00	1.00
2 8.01 1.11 0.56 2 44.30 1.09	0.55
4 2.77 3.21 0.80 4 30.68 1.58	0.39
8 1.12 7.99 1.00 8 11.97 4.04	0.51
16 0.61 14.56 0.91 16 3.34 14.49	0.91
24 0.46 19.16 0.80 24 1.71 28.27	1.18
32 0.37 24.28 0.76 32 1.29 37.59	1.17
48 0.29 31.00 0.65 48 0.89 54.28	1.13
80 0.22 39.80 0.50 80 0.62 78.63	0.98
96 0.21 43.06 0.45 96 0.55 88.33	0.92
120 0.19 46.47 0.39 120 0.48 100.57	0.84
160 0.17 51.25 0.32 160 0.41 118.94	0.74
240 0.16 54.58 0.23 240 0.34 143.04	0.60
480 0.15 59.81 0.12 480 0.28 175.50	

ARCHER-S	ScaleFa	ctor 100			ARCHER-Scal	eFactor 150		
MPI procs	Ti	me	Speedup	Efficiency	MPI procs	Time	Speedup	Efficiency
·	1	694.66	1.00	1.00		1 1577.00	1.00	1.00
	2	378.47	1.84	0.92		2 856.87	7 1.84	0.92
	4	272.62	2.55	0.64		4 617.34	2.55	0.64
	8	250.92	2.77	0.35		8 569.49	2.77	0.35
	16	184.39	3.77	0.24	1	6 423.34	3.73	0.23
	24	121.45	5.72	0.24	2	4 280.15	5.63	0.23
	32	88.64	7.84			2 207.53		
	48	56.98	12.19		4			
	80	31.66	21.94			0 77.9		
	96	25.26	27.50			6 69.59		
	120	13.89	50.02		12			
	160	4.68	148.34		16			
	240	1.83	379.89		24			
	480	1.07	648.81	1.35	48	0 4.96	317.79	0.66
LIEGT D O		.1			LIFOT D O I	F 1 150		
HECToR-S			0	- ((),)	HECToR-Scale		0	- (() -1
MPI procs	4		Speedup	Efficiency	MPI procs	Time	Speedup	Efficiency
	1	1229.85	1.00			1 2794.46		
	2	1135.95	1.08			2 2545.46		
	4 8	810.08	1.52 1.53			4 1823.64 8 1803.73		
		803.56 404.02				6 903.92		
	16 24	270.39	3.04 4.55			4 604.05		
	32	203.32	4.55 6.05			4 604.03 2 454.33		
	32 48	135.61	9.07			8 304.80		
	80	80.72	15.24			0 183.54		
	96	66.10	18.61	0.19		6 152.96		
	120	50.12	24.54		12			
	160	31.63	38.88		16			
	240	8.23	149.44		24			
	480	3.19	385.72		48			
	+00	3.19	303.72	0.00	40	0 11.20	Z43.40	0.52

