
Message Passing 

Programming
Modes, Tags and Communicators



Overview

• Lecture will cover
• explanation of MPI modes (Ssend, Bsend and Send)

• meaning and use of message tags

• rationale for MPI communicators

• These are all commonly misunderstood

• essential for all programmers to understand modes

• often useful to use tags

• certain cases benefit from exploiting different communicators



Modes

• MPI_Ssend (Synchronous Send)
• guaranteed to be synchronous
• routine will not return until message has been delivered

• MPI_Bsend (Buffered Send)
• guaranteed to be asynchronous
• routine returns before the message is delivered
• system copies data into a buffer and sends it later on

• MPI_Send (standard Send)
• may be implemented as synchronous or asynchronous send
• this causes a lot of confusion (see later)



MPI_Ssend
Process A Process B

Ssend(x,B)

Recv(y,A)

Running other 
non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returnsSsend returns

x can be 
overwritten by A

y can now be 
read by B



MPI_Bsend
Process A Process B

Bsend(x,B)

Recv(y,A)

Running other 
non-MPI code

y

Bsend returns
x can be 
overwritten by A

y can now be 
read by B

x

Recv returns



Notes

• Recv is always synchronous
• if process B issued Recv before the Bsend from process A, then B 

would wait in the Recv until Bsend was issued

• Where does the buffer space come from?
• for Bsend, the user provides a single large block of memory

• make this available to MPI using MPI_Buffer_attach

• If A issues another Bsend before the Recv
• system tries to store message in free space in the buffer

• if there is not enough space then Bsend will FAIL!



Send
• Problems

• Ssend runs the risk of deadlock

• Bsend less likely to deadlock, and your code may run faster, but

• the user must supply the buffer space

• the routine will FAIL if  this buffering is exhausted

• MPI_Send tries to solve these problems

• buffer space is provided by the system

• Send will normally be asynchronous (like Bsend)

• if buffer is full, Send becomes synchronous (like Ssend)

• MPI_Send routine is unlikely to fail

• but could cause your program to deadlock if buffering runs out



MPI_Send
Process A Process B

Send(x,B) Send(y,A)

Recv(y,A)Recv(x,B)

• This code is NOT guaranteed to work
• will deadlock if Send is synchronous

• is guaranteed to deadlock if you used Ssend!



Solutions
• To avoid deadlock

• either match sends and receives explicitly

• eg for ping-pong

• process A sends then receives

• process B receives then sends

• For a more general solution use non-blocking 

communications (see later)

• For this course you should program with Ssend

• more likely to pick up bugs such as deadlock than Send



Tags

• Every message can have a tag
• this is a non-negative integer value

• maximum value set by MPI_TAG_UB attribute (at least 32767)

• not everyone uses them

• many MPI programs set all tags to zero

• Tags can be useful in some situations
• can choose to receive messages only of a given tag

• Most commonly used with MPI_ANY_TAG
• receives the most recent message regardless of the tag

• user then finds out the actual value by looking at the status



Communicators

• All MPI communications take place within a communicator

• a communicator is fundamentally a group of processes

• there is a pre-defined communicator: MPI_COMM_WORLD which 

contains ALL the processes

• also MPI_COMM_SELF which contains only one process

• A message can ONLY be received within the same 

communicator from which it was sent
• unlike tags, it is not possible to wildcard on comm



Uses of Communicators (i)
• Can split MPI_COMM_WORLD into pieces

• each process has a new rank within each sub-communicator

• guarantees messages from the different pieces do not interact

• can attempt to do this using tags but there are no guarantees

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5

size=7

rank=2

MPI_COMM_WORLD

rank=0
rank=1 rank=3

size=4
size=3

comm1 comm2

rank=2rank=0

rank=1

MPI_Comm_split()



Uses of Communicators (ii)

• Can make a copy of MPI_COMM_WORLD
• e.g. call the MPI_Comm_dup routine

• containing all the same processes but in a new communicator

• Enables processes to communicate with each other safely 
within a piece of code
• guaranteed that messages cannot be received by other code

• this is essential for people writing parallel libraries (eg a Fast Fourier 
Transform) to stop library messages becoming mixed up with user 
messages

• user cannot intercept the the library messages if the library keeps the 
identity of the new communicator a secret

• not safe to simply try and reserve tag values due to wildcarding



Summary (i)
• Question: Why bother with all these send modes?

• Answer
• it is a little complicated, but you should make sure you understand

• Ssend and Bsend are clear

• map directly onto synchronous and asynchronous sends

• Send can be either synchronous or asynchronous

• MPI is trying to be helpful here, giving you the benefits of Bsend if there is 
sufficient system memory available, but not failing completely if buffer 
space runs out

• in practice this leads to endless confusion!

• The amount of system buffer space is variable
• programs that run on one machine may deadlock on another

• you should NEVER assume that Send is asynchronous!



Summary (ii)

• Question: What are the tags for?

• Answer

• if you don’t need them don’t use them!

• perfectly acceptable to set all tags to zero

• can be useful for debugging

• eg always tag messages with the rank of the sender



Summary (iii)

• Question: Can I just use MPI_COMM_WORLD?

• Answer
• yes: many people never need to create new communicators in their 

MPI programs
• however, it is probably bad practice to specify MPI_COMM_WORLD

explicitly in your routines
• using a variable will allow for greater flexibility later on, eg:

MPI_Comm comm;        /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....


