
MPI-IO Exercises

Toni Collis

1 Introduction

The aim of this exercise is to write a simple MPI-IO program that reads a file using a block decomposition
on a 2D grid of processes. You are provided with a simple working template that you extend throughout
the exercise. Before updating the template, it is important that you spend some time looking at the main
program to ensure that you understand how the sizes of the arrays are defined, and how the processes
coordinates in the 2D grid are stored.

2 Setup

First copy the file mpiio.tar file from the ARCHER course web page to your workspace directory on
ARCHER (/work/y14/y14/guestXX/) then unpack it:

user@archer> tar xvf mpiio.tar
x mpiio/C, 0 bytes, 0 tape blocks
x mpiio/C/cinput0480x0216.dat, 414720 bytes, 810 tape blocks
...

3 Master IO

You should work in either the C or F subdirectories.

Type make to compile the code (and a utility program for viewing data files), and submit to the batch
system to run on a single process as follows:

user@archer> qsub -q <resid> mpiio.pbs

The argument to -q is the the reserved course queue ID, which will be provided for you by the instructor.

You can monitor the progress of your job using the qstat command; when it finishes, standard output
will appear in a file of the form mpiio.pbs.oXXXXXX; any errors will be in mpiio.pbs.eXXXXXX.

You can view the input file as follows (for C or Fortran respectively):

user@archer> ./cioview cinput0480x0216.dat
user@archer> ./fioview finput0480x0216.dat

The output file has "_00" appended to it because it was written by rank 0 — view it as follows

user@archer> ./cioview coutput0480x0216_00.dat
user@archer> ./fioview foutput0480x0216_00.dat

1



You should take a look at the code in the main programs (mpiio.c and mpiio.f90) and check that you
understand what is going on. You should not spend a lot of time looking at the routines in ioutils.c
and ioutils.f90 — all you need is a basic understanding of what they do.

• initpgrid(pcoords, nxproc, nyproc) uses MPI cartesian topologies to work out the
positions of all the processes in a process grid of size nxproc× nyproc.

• initarray(buf, M, N) initialises the buf array to some default value which is chosen to
show up as grey in the image viewer.

• createfilename(filename, basename, M, N, rank) creates file names which in-
clude the size of the array and the rank of the process, which is useful for debugging purposes.
The file name is constructed in the format basenameMxN_rank.dat, with the trailing process
identifier being omitted if rank is negative.

• ioread(filename, buf, n) is a serial routine that reads n single-precision floating-point
numbers from the file filename into the array buf.

• iowrite is almost identical to ioread except that it writes data instead of reading it.

The program defines a large array buf which holds the entire file on the master. The smaller array x
only holds local data. The template program simply copies a subsection of the buf array to x.

4 Parallel Runs

To run codes in parallel you must do two things:

• edit the values of XPROCS and YPROCS in mpiio.c, or xprocs and yprocs in mpiio.f90,
to specify the dimensions of the process grid;

• change the argument to aprun in the PBS batch file to match.

The dimensions of the process grid are specified at compile time to make the allocation of 2D arrays of
the correct size easier in C (where we use static array allocation for simplicity). At run time, the program
checks that it is running on the correct number of processes.

The exercise now proceeds as follows:

1. Edit the main program to use a 2× 2 process grid, then recompile and run on 4 processes. Look at
the 4 output files (note they have different names from the previous single process run as the local
array size is now smaller). Check you understand the output images — you can view multiple
images as follows:

user@archer> ./cioview coutput0240x0108_*.dat
user@archer> ./fioview foutput0240x0108_*.dat

2. Now use MPI to broadcast the buf array to every process and check you understand the output.

3. By using the process coordinates stored in the pcoords array, copy down the appropriate subarray
from buf to x and check that you get the correct output for a number of different decompositions.

4. Now remove the broadcast call and distribute the data by having the master copy the appropriate
data for each process from buf into x and sending it; every other process should receive this
data into its local copy of x. Having done all the sends, the master can finally copy down its own
subsection of x. Run the program and check that it works for a number of different decompositions.

2



5 Derived Datatypes

We will now eliminate all of the copying by using derived datatypes. You will have to change the send
calls on the master so that they now use the new datatypes, but you should be able to leave the receive
calls on the other processes unaltered.

1. Define a vector datatype which corresponds to the subarray on each process and use this to send
the data. As this is a floating datatype, the master will have to specify the start of the send buffer
appropriately for each send call.

2. Repeat the above using a subarray datatype. As this is a fixed datatype, the master will need to
define a different type appropriate for each receiving process. However, you will be able to use the
same send buffer for every send call.

6 MPI-IO

We will now eliminate both the large buf array and the explicit MPI send/receive calls by using MPI-IO.
With MPI-IO, the appropriate data is read directly from file onto each process.

The derived datatypes you defined on the master for the previous exercise are exactly the same as are
required by each process to define what data it wants to read from the file via MPI_File_set_view.

For floating vector types, we previously had a single type but specified a non-zero offset into the sending
buffer, different for each process. In MPI-IO, the equivalent is for each process to specify a non-zero
displacement into the file. The difference is that the displacement must now be specified in bytes. You
can find out the size in bytes of a basic type (eg an MPI_FLOAT) by calling MPI_Type_size.

For fixed subarray types, we previously had multiple types (one for each receiving process) and had a
zero offset for each sending buffer, ie we simply passed the start of the buffer to each send call. In MPI-
IO, the equivalent is for every process to define an appropriate subarray based on its position in the 2D
grid, but to specify a zero displacement in MPI_File_set_view.

6.1 Updating your program

Make the following changes to your program:

• remove the buf array

• open the file with MPI_File_open

• pass the correct combination of derived datatype and displacement to the MPI_File_set_view
routine (see below)

• read the appropriate number of floats/reals from the file using MPI_File_read_all

• close the file with MPI_File_close

You should try both of the following choices for MPI_File_set_view:

1. Using a vector datatype and non-zero displacements.

2. Using subarray datatypes and zero displacement.

You must explicitly check the return codes from all calls to MPI-IO routines, and report an error if they
differ from MPI_SUCCESS.

To check that your program is working correctly you should visualise the results as before. You should
also run on a range of processor decompositions, eg: 4× 1; 2× 2; 1× 4; 2× 3; 3× 2; ...

3



7 Extra Exercises

Here is a list of extra exercises you might like to try – note that they are in no particular order.

1. We have concentrated on parallel input as it is much easier to design an incremental practical
example based on reading files rather than writing them. However, in practice, files are usually
written much more frequently than they are read, so parallel output is more critical in terms of
application performance.

You should be able to use your existing derived types to write a single output file in parallel using
MPI_File_write_all. If done correctly, this should be bit-identical to the original input file.
Note that if you want to see the file as an image you will have to construct the file name using
createfilename as the viewing routines require the image size to be encoded in the name.
Remember to pass a rank value of -1 to this routine so that all processes use the same file name.

2. Use MPI_Type_create_darray to create a block decomposition. Now generalise to a block-
cyclic decomposition and check that you get the correct results.

3. Define the x array to have a halo of depth 1. In order to read data directly into the core of this
array, you will have to define a derived datatype that corresponds to the array without its halo. You
can then use this datatype in MPI_File_read. You should ensure that you update the call to
initarray so that the whole of x is initialised including the halos. Run the program and check
that the core data is received as expected, and that the halos are left untouched.

4


