MPI1 3.0
elghbourhood
' Collectlves

David Henty Dan Holmes
EPCC, University of Edinburgh

* Review of topologies in MPI

* MPI 3.0 includes new neighbourhood collective operations:

— MPI_Neighbor_allgather|[v]
— MPI_Neighbor_alltoall[v|w]

* Example usage:

— Halo-exchange can be done with a single MPI communication call

e Practical tomorrow:

— Replace all point-to-point halo-exchange communication with a single
neighbourhood collective in your MPP coursework code

Topology communicators (rev’iev\'iml

* Regular n-dimensional grid or torus topology
— MPI_CART_CREATE

* (General graph topology

— MPI_GRAPH_CREATE
— All processes specify all edges in the graph (not scalable)

* General graph topology (distributed version)

— MPI_DIST_GRAPH_CREATE_ADJACENT

— All processes specify their incoming and outgoing neighbours
— MPI_DIST_GRAPH_CREATE

— Any process can specify any edge in the graph (too general?)

Topology communicators (rev’iev\'iml

* Testing the topology type associated with a communicator

— MPI_TOPO_TEST

* Finding the neighbours for a process
— MPI_CART_SHIFT

— Find out how many neighbours there are:
— MPI_GRAPH_NEIGHBORS COUNT
— Get the ranks of all neighbours:
— MPI_GRAPH_NEIGHBORS

— Find out how many neighbours there are:

— MPI_DIST_GRAPH_NEIGHBORS COUNT
— Get the ranks of all neighbours:

— MPI_DIST_GRAPH_NEIGHBORS

Neighbourhood collective operatfm

* See section 7.6 in MPI 3.0 for blocking functions

— See section 7.7 in MPI 3.0 for non-blocking functions
— See section 7.8 in MPI 3.0 for an example application
— But beware of the mistake(s) in the example code!

* MPI_[N]|In]eighbor_allgather[v]

— Send one piece of data to all neighbours
— Gather one piece of data from each neighbour

* MPI_[N]|In]eighbor_alltoall[v|w]

— Send different data to each neighbour
— Receive different data from each neighbour

* Use-case: regular or irregular domain decomposition codes

— Where the decomposition is static or changes infrequently
— Because creating a topology communicator takes time

B)

I\/IPI_Neighbor_allgathké'rwmﬂlﬁm

sendtype
sendbuf sendcount

(A \ To 15t neighbour

recvbuf

To 2" neighbour
To 3" neighbour

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4t neighbour
From 5" neighbour

» Same send buffer
for each outgoing

neighbour
Y } » Contiguous chunks
In receive buffer
recvtype from each incoming
recvcount neighbour

I\/IPI_Neighbor_allgath‘éir:/"-m"@’m

sendtype
sendbuf sendcount

(A | To 1%t neighbour

recvbuf

To 2" neighbour

To 3" neighbour

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4™ neighbour
From 5" neighbour

» Same send buffer
for each outgoing

neighbour
\)« Non-contiguous
recv#ype variable-sized
: chunks in receive
displs[5]
buffer from each
recvcounts[5] incoming neighbour

MPI_Neighbor_alitoall = SrSAINT=Telee])

sendtype

sendbuf sendcount

\
(\

To 15 neighbour
To 2" neighbour
To 3" neighbour

recvbuf

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4™ neighbour
From 5™ neighbour

» Contiguous chunks
In send buffer
for each outgoing
neighbour

» Contiguous chunks
I in receive buffer
recvtype rom each incoming
yP neighbour

recvcount

MPI_Neighbor_alitoallv = "Sre\ NI eTee]}

sendtype
sdispls[3]
sendbuf sendcoAunts[S]
(\
$o %Stdneighhbbour
0 2" neighbour
recvbuf To 3" neighbour

e Non-contiguous
variable-sized chunks
in send buffer
for each outgoing
neighbour

» Non-contiguous
\ J variable-sized chunks

From 15t neighbour
From 2" neighbour
From 3" neighbour
From 4™ neighbour
From 5™ neighbour

reC\}type In receive buffer from
- each incoming
rdispls[s] neighbour
recvcounts[5]

MPI_Neighbor_alitoallw A NNT=eleel]

sendtypes[3]
sendbuf sdispls[3]
\Sendcokunts[?v]
(\
$o %Stdneighhbbour
0 2" neighbour
recvbuf To 3" neighbour

Erom 15t neighb * Non-contiguous
rom L' nelgnoour variable-sized chunks
Fr Om 2 nel ghbour SRR s - d b ﬁ

. nel in send buffer
From 3% neighbour for each outgoing
From 4™ neighbour neighbour

From 5™ neighbour » Non-contiguous
\ J variable-sized chunks

okl
rdispls[5] neighbour
recvcounts[5]

MPI_Neighbor alltoallw

for (int i=0;i<4;++) { sendbuf CONTIGUOUS i
sendcounts|i] = 1, INTIGUO!

recvcounts[i]=1; } recvbuf

sendtypes[0] = contigType;
senddispls[0] = colLen*(rowLen+2)+1;
sendtypes[1] = contigType; INTIGUOIL
senddispls[1] = 1*(rowLen+2)+1; g CONTIGUOUS
sendtypes[2] = vectorType; S

senddispls[2] = 1*(rowLen+2)+1;
sendtypes[3] = vectorType; rowlen
senddispls[3] = 2*(rowLen+2)-2; colLen

// similarly for recvtypes and recvdispls

TO—HOmML
TO—HOmM<L
TO—HOmML

MPI_Neighbor_alltoallw(sendbuf, sendcounts, senddlsPIs sendtypes,
recvbu)f recvcounts, recvdsipls recvtypes
comm

Summary

* Regular or irregular domain decomposition codes

— Where the decomposition is static or changes infrequently

* Should investigate replacing point-to-point communication

— E.g. halo-exchange communication

* With neighbourhood collective communication
— Probably MPI_Ineighbor_alltoallw

* So that MPI can optimise the whole pattern of messages

— Rather than trying to optimise each message individually

* And so your application code is simpler and easier to read

Exercise i iy ®

* Extend MPP coursework to use neighbourhood collectives

e Procedure

— define a cartesian topology (if not already done)

— replace explict halo swapping with neighbourhood collectives

— first use MPI_neighbor_alltoall
— declare new buffers large enough to contain 4 halos (send + recv)
— copy boundaries (in correct order) from main array to send buffer
— call MPI1_neighbor_alltoallv
— unpack contents from receive buffer to halos of main array

— now use MPI_neighbor_alltoallw to avoid copies
— see example in slides

— can now read / write from / to main array directly by defining
appropriate derive types and displacements

— be careful about what you call “up” and “down” halos!

\% 8 B)

