
Joachim Hein
EPCC

The University of Edinburgh

Advanced Parallel
Programming

Networks and All-to-All
communication

David Henty,

28 October 2015 Networks and All-to-All 2

Overview of this Lecture

• All-to-All communications
– MPI_Alltoall
– MPI_Alltoallv

• Bi-sectional bandwidth, insertion bandwidth and performance
of Alltoall communications

Rationale

• Alll-to-all comms is central to several key parallel algorithms
– e.g. parallel Fast Fourier Transform

• Need to understand what limits performance in practice

• Try to optimise for particular architectures (see later)

28 October 2015 Networks and All-to-All 4

MPI_Alltoall

• The simple command MPI_Alltoall offers a convenient way to
initiate an All-to-All communication

• In C:

int MPI_Alltoall(

void* sendbuf, int sendcount,

MPI_Datatype sendtype,

void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

28 October 2015 Networks and All-to-All 5

MPI_Alltoall (continued)

• In Fortran:

MPI_ALLTOALL(<type> SENDBUF,

INTEGER SENDCOUNT,INTEGER SENDTYPE,

<type> RECVBUF,INTEGER RECVCOUNT,

INTEGER RECVTYPE,

INTEGER COMM,INTEGER IERROR)

• Each processor has one send buffer and one receive buffer
– exchange same number of elements, same datatype on each process
– consecutive data elements separated by their extent

28 October 2015 Networks and All-to-All 6

Example for buffer use
sendcount = 5, communicator with 4 processors

28 October 2015 Networks and All-to-All 7

Strided data layout

• Typical case: Rows/columns of Fortran/C matrix

• Construction of such a data-type discussed later this lecture
– alternatively copy into contiguous buffer

28 October 2015 Networks and All-to-All 8

MPI_Alltoallv

• MPI_Alltoallv offers more flexibility

• The “v” stands for vector

• In C:

int MPI_Alltoallv(

void* sendbuf, int *sendcounts,

int *sdispls, MPI_Datatype sendtype,

void *recvbuf, int *recvcounts,

int *rdispls, MPI_Datatype recvtype,

MPI_Comm comm);

28 October 2015 Networks and All-to-All 9

MPI_Alltoallv (continued)
• In Fortran:

MPI_ALLTOALLV(

<type> SENDBUF, INTEGER SENDCOUNTS(*),

INTEGER SDISPLS(*), INTEGER SENDTYPE,

<type> RECVBUF, INTEGER RECVCOUNTS(*),

INTEGER RDISPLS(*), INTEGER RECVTYPE,

INTEGER COMM, INTEGER IERROR)

• Now: Array of SENDCOUNTS & RECVCOUNTS

• New: Array of displacements, specifying starting position

• Still: Single SENDTYPE & RECVTYPE

28 October 2015 Networks and All-to-All 10

Sending different sized messages

28 October 2015 Networks and All-to-All 11

Strided data layout

28 October 2015 Networks and All-to-All 12

call mpi_type_vector(n_elem, 1, n_proc, &

mpi_integer, vector, ierror)

call mpi_type_commit(vector, ierror)

bl_array = 1

disp_array(1) = 0

call mpi_type_size(mpi_integer, disp_array(2), ierror)

type_array(1) = vector

type_array(2) = MPI_UB

call mpi_type_struct(2, bl_array, disp_array, &

type_array, a2a_stride_type, ierror)

call mpi_type commit(a2a_stride_type, ierror)

Aside: making the derived data type (old!)

Place MPI_UB as second
block behind the 1st integer
of the vector in the struct

Create a vector for the
strided data entries

28 October 2015 Networks and All-to-All 13

call mpi_type_vector(n_elem, 1, n_proc, &

mpi_integer, vector, m_error)

call mpi_type_commit(vector, ierror)

call mpi_type_size(MPI_INTEGER, intsize, ierror)

call mpi_type_create_resized(vector, 0, intsize,

a2a_stride_type, ierror)

call mpi_type commit(a2a_stride_type, ierror)

Aside: making the derived data type (new!)

Explicitly resize the datatype
to start at displacement 0
and end at a single integer

Create a vector for the
strided data entries

Performance of All-to-All

• Key bottlenecks for performance of the All-to-All
communication include

– Bi-sectional bandwidth
– Insertion Bandwidth into the network

28 October 2015 Networks and All-to-All 15

Reminder: Bi-sectional bandwidth

• Divide the processors into two equal sized groups

• Consider interconnect bandwidth between the two groups

• Redo for all possibilities to divide the machine

• The minimum observed interconnect bandwidth is called bi-
sectional bandwidth

28 October 2015 Networks and All-to-All 16

1st Example: Processors on a ring

• Independent of cut: 2 link speed for bi-sectional bandwidth

28 October 2015 Networks and All-to-All 17

2nd Example: Open processor mesh

• Number of links depends on the cut

• Relevant cut: 2 link speed for bi-sectional bandwidth

28 October 2015 Networks and All-to-All 18

All-to-all and bi-sectional bandwidth
• Assume a “normal” all-to-all: each processor sends the same

amount of data to each other processor – no MPI_Alltoallv

• Cut the processor group into two halves
– Each group has: half of the total data
– Each group must transfer half of its data (quarter of total) to other side
– This data needs to go through the “bi-section”

• All-to-all communication cannot complete faster than
tb = ¼ D/s = ¼ pd/s = ¼ p2x/s

s: bi-sectional bandwidth, D: total data of the problem
d: data per process, x: message size, p: number of processes

BlueGene/L

• Simple case
– single processor per node
– 3D mesh network

• What is bi-sectional
bandwidth for 32
processor partition?

28 October 2015 Networks and All-to-All 20

Example for 32 proc partition of BG/L

• Latency
dominates for
small
messages

• Bi-sectional
Bandwidth
saturates at
1GB/s

• Agrees with
8 linkspeed
of 147 MB/s

All-to-all and insertion bandwidth

• Insertion bandwidth can be another key bottle neck
– how fast can data be sent to the network?

• Typically increases with the number of processors
– each process can send data to the network separately

• Can get complicated for SMP clusters
– some data is kept local to a node
– some goes over the network

Example: All-to-All on a single SMP
• Insertion

bandwidth
related to
memory
bandwidth
– HPCx 16 task:

Copy 2GB/s
per processor

– Ness 16 task:
Copy 0.37GB/s
per processor

Limited in the bi-section or at the insertion?

• Networked machine: Look at the scaling with processor
number

• Insertion limitation:
– Insertion bandwidth per task independent of task count
– Total insertion bandwidth proportional to task count

– e.g. bandwidth doubles when doubling the task count
– Compare insertion bandwidth per task to Ping-Ping results on

(almost) empty machine

• Bi-section limitation:
– Bi-sectional bandwidth typically not proportional to the task count, e.g.

on a 3D meshed network (BlueGene), bi-sectional bandwidth
increases by a factor of 4 when using 8 times the task count

– Need to understand (a bit about) the network to be fully certain
– Can depend on the location of your tasks on the physical machine
– If insertion bandwidth per task decreases when increasing task count,

we have an indication for limitation in the communication network

28 October 2015 Networks and All-to-All 24

Summary

• All-to-all communications can be initiated conveniently by
using MPI_Alltoall and MPI_Alltoallv
– MPI_Alltoall: very simple to use
– MPI_Alltoallv: allows more flexibility

• The performance of the operation is typically limited by
– The bi-sectional bandwidth of the (partition of the) machine

– The insertion bandwidth between the processor and the network

28 October 2015 Networks and All-to-All 25

What can we do?

• Keep comms local to a node
– placement of processes to nodes is an issue

– e.g. use communicator management routines

• Avoid some of the MPI calls
– hybrid MPI/OpenMP

– no need for explicit data redistribution on a node

