anced Parallel
LX Programmlng

Networks and All-to-All
communication

David Henty, Joachim Hein
EREC
The University of Edinburgh

; . ‘BTRAS
Overview of this Lecture B m

e All-to-All communications

— MPI_Alltoall
— MPI_Alltoallv

* Bi-sectional bandwidth, insertion bandwidth and performance
of Alltoall communications

28 Octoper 2015 Networks and All-to-All l

. ‘R IR R RTREN
Rationale B ml

* Alll-to-all comms is central to several key parallel algorithms

— e.g. parallel Fast Fourier Transform

* Need to understand what limits performance in practice

* Try to optimise for particular architectures (see later)

i X \
. L . o .
-
b . -

MPI_Alltoall

* The simple command MPI_Alltoall offers a convenient way to
Initiate an All-to-All communication

* InC:
int MPI_Alltoall(

void* sendbuf, 1nt sendcount,

MP1 Datatype sendtype,

void* recvbuf, 1nt recvcount,

MP1 Datatype recvtype, MP1_Comm comm)

28 Octoper 2015 Networks and All-to-All l

MPI Alltoall (continued)

* |n Fortran:
MPI1_ALLTOALL(<type> SENDBUF,
INTEGER SENDCOUNT, INTEGER SENDTYPE,
<type> RECVBUF, INTEGER RECVCOUNT,
INTEGER RECVTYPE,
INTEGER COMM, INTEGER IERROR)

* Each processor has one send buffer and one receive buffer

— exchange same number of elements, same datatype on each process
— consecutive data elements separated by their extent

28 O.ctoe'r._ZO 5 Networks and All-to-All l

Example for bufferuse “m

sendcount = 5, communicator with 4 processors

sendbuf recvbut
= to rank 0 from rank O =
= to rank 1 from rank 1 =
= to rank 2 from rank 2 =
= to rank 3 from rank 3 =

28 Octoper 2015 Networks and All-to-All l-

Strided data layout ety L |G

= {ora
= {ora
= {ora

= tora sendtype = [l with extent of: N
> tora (?
= tora
[]
[]
[]
» to rank 3 []

* Typical case: Rows/columns of Fortran/C matrix

* Construction of such a data-type discussed later this lecture

— alternatively copy into contiguous buffer

28 Octoper 2015 Networks and All-to-All l

MPI Alltoallv

e MP1_Alltoallv offers more flexibility
* The “v” stands for vector

* InC:
int MPI_Alltoallv(
void* sendbuf, Int *sendcounts,
int *sdispls, MPl_Datatype sendtype,
voild *recvbuf, Int *recvcounts,
int *rdispls, MPl_Datatype recvtype,

MP1_Comm comm);

28 Octoper 2015 Networks and All-to-All l-

MP1 Alltoallv (continued)
* |n Fortran:

MP1 ALLTOALLV(
<type> SENDBUF, INTEGER SENDCOUNTS(*),
INTEGER SDISPLS(*), INTEGER SENDTYPE,
<type> RECVBUF, INTEGER RECVCOUNTS(*),
INTEGER RDISPLS(*), INTEGER RECVTYPE,
INTEGER COMM, INTEGER IERROR)

* Now: Array of SENDCOUNTS & RECVCOUNTS

* New: Array of displacements, specifying starting position
e Still: Single SENDTYPE & RECVTYPE

28 O.ctoe'r._ZO' Networks and All-to-All l_

Sending different sized mesgagem

I = to rank 0
sendcounts = (/3,6,4.,7/)
= to rank 1
o sdispls = (/0.3.9,13/)
sendtype =
= to rank 2
= to rank 3

28 Octoper 2015 Networks and All-to-All l

Strided data layout LSRR WTESeON

» to rank 0 sendcounts = (/2.1,1.1/)
= 10O Tani Sdlspls — (0!2!354!“) ﬁ
> lo rang sendtype =l with extent of: W
= to rank - B
= to rank 0 H
= to rank 1 —
||
||
]
||
= to rank 3 B

28 Octoper 2015 Networks and All-to-All l

Aside: making the derived data tym

call mpi_type vector(n_elem, 1, n_proc, &

mpi_integer, vector, l1error)

call mpi_type commit(vector, 1ierror)

Create a vector for the
bl_array =1 strided data entries

disp _array(l) =0

call mpi1_type size(mpi_integer, disp _array(2), 1error)

t 1) = T
ype_array(l) = vector Place MP1_UB as second

type_array(2) = MP1_UB block behind the 1st integer
of the vector in the struct

call mpi1_type struct(2, bl _array, disp _array, &
type_array, a2a stride type, 1error)

call mpi_type commit(a2a_stride type, 1error)

28 Qctober 2015 | Networks and All-to-All - 14

Aside: making the derived data tym

call mpi_type vector(n_elem, 1, n_proc, &
mpi_integer, vector, m _error)

Create a vector for the
call mpi_type commit(vector, 1ierror) strided data entries

Explicitly resize the datatype
to start at displacement O
and end at a single integer

call mpi_type size(MPI_INTEGER, i1ntsize, i1error)

call mpi_type create resized(vector, 0, iIntsize,
a2a_stride _type, 1error)

call mpi_type commit(a2a_stride_type, 1error)

28 Qctober 2015 | Networks and All-to-All - 13

Performance of All-to-All 9 Blutm

* Key bottlenecks for performance of the All-to-All
communication include

— Bi-sectional bandwidth
— Insertion Bandwidth into the network

Reminder: Bi-sectional bandWidtml

* Divide the processors into two equal sized groups
* Consider interconnect bandwidth between the two groups
* Redo for all possibilities to divide the machine

* The minimum observed interconnect bandwidth is called bi-
sectional bandwidth

28 Octoper 2015 Networks and All-to-All - 15

1st Example: Processors on é‘rihm

* Independent of cut: 2x link speed for bi-sectional bandwidth

2 Links

2 Links

28 Octoper 2015 Networks and All-to-All - 16

Lo,

2nd Example: Open processo‘r‘nﬁm

* Number of links depends on the cut

* Relevant cut: 2x link speed for bi-sectional bandwidth

28 Octoper 2015 Networks and All-to-All - 17

All-to-all and bi-sectional bandwidth ™ “%%%

* Assume a “normal” all-to-all: each processor sends the same
amount of data to each other processor — no MPI_Alltoallv

e Cut the processor group into two halves

— Each group has: half of the total data
— Each group must transfer half of its data (quarter of total) to other side
— This data needs to go through the “bi-section”

* All-to-all communication cannot complete faster than
t, =% DIs = Y4 pd/s = ¥4 p2x/s
S: bi-sectional bandwidth, D: total data of the problem
d: data per process, X: message size, p: number of processes

28 Qctober 2015 | Networks and All-to-All - 18

BlueGene/L

* Simple case

— single processor per node
— 3D mesh network

* What is bi-sectional
bandwidth for 32
processor partition?

HE—ETE—H
HE—E—E8—n8 |
| | | |_ =
HE—E—E—H8 |
| | | |_ =
HE—E—E—H8 |
| | | |_ =
HE—E—HE— B

R) '

Example for 32 proc partltlon of m

* [atency
_ — 1000 |
dominates for 2 |
small =
=
k=]
messages E
* Bi-sectional @
. — 100 ¢
Bandwidth © -
o
saturates at o
73]
|
1GB/s L
* Agrees with
8x linkspeed O T 0 T 1000 10000 100000
of 147 MB/s Individual message size [bytes]

28 Qctober 2045 | Networks and All-to-Al - 20

All-to-all and insertion bandwidth

.)

* |nsertion bandwidth can be another key bottle neck

— how fast can data be sent to the network?

* Typically increases with the number of processors

— each process can send data to the network separately

* (Can get complicated for SMP clusters

— some data is kept local to a node
— some goes over the network

W T LA

Example: All-to-All on a si?\g eS

* |nsertion
bandwidth All-to—-All performance on 16 way nodes
related to 3 —
S 1000
memory — :
i 5 [
bandWIdth § 100 ¢ A panaiti-na
— HPCx 16 task: S : o .
Copy 2GB/s = - o
per processor 5 10} g
— Ness 16 task: &
Copy 0.37GB/s © 1
per processor 2 .._ﬂ
c K
8 ./ ®—@ HPCx
0.1 [B8 Ness
c
9O
|5
£ 0.001 0.01 01 1 10 100 1000 10000

Size of individual message [kB]

“ l

Limited in the bi-section or at the'm

Networked machine: Look at the scaling with processor
number

¢ |nsertion limitation:

— Insertion bandwidth per task independent of task count
— Total insertion bandwidth proportional to task count
— e.g. bandwidth doubles when doubling the task count

— Compare insertion bandwidth per task to Ping-Ping results on
(almost) empty machine

e Bi-section limitation:

— Bi-sectional bandwidth typically not proportional to the task count, e.g.
on a 3D meshed network (BlueGene), bi-sectional bandwidth
Increases by a factor of 4 when using 8 times the task count

— Need to understand (a bit about) the network to be fully certain
— Can depend on the location of your tasks on the physical machine

— If insertion bandwidth per task decreases when increasing task count,
we have an indication for limitation in the communication network

RN B)

Summary

* All-to-all communications can be initiated conveniently by

using MPI1_Alltoall and MPI_Alltoallv

— MPI1_Alltoall: very simple to use
— MP1_Alltoallv: allows more flexibility

* The performance of the operation is typically limited by
— The bi-sectional bandwidth of the (partition of the) machine

— The insertion bandwidth between the processor and the network

28 Octoper 2015 Networks and All-to-All - 24

What can we do?

e Keep comms local to a node

— placement of processes to nodes is an issue

— e.g. use communicator management routines

* Avoid some of the MPI calls
— hybrid MP1/OpenMP
— no need for explicit data redistribution on a node

28 Octoper 2015 Networks and All-to-All - 25

