
Dan Holmes
EPCC, University of Edinburgh

MPI Single-sided

Advanced Parallel Programming

Overview

• Terms and concepts

• Windows

• Memory models

• Data-movement operations

• Synchronisation operations

• Atomic operations

• Local completion

Terms and concepts

• Called “one-sided” or “single-sided” because:
– All communication parameters specified by a single process

• Called “RMA” or “remote memory access” because:
– Data movement is separated from process synchronisation

• Initialise by collectively creating a “window”
– A chunk of local memory that will be accessed by remote processes

• The “origin” process calls MPI during an “access epoch”

• Memory is accessed at the “target” process

• Synchronisation is “passive” target or “active” target

• Active target requires an “exposure epoch”

MPI Windows

• All window creation functions are collective over the specified
communicator, which must be an intra-communicator

• MPI_Win_create
– Each process specifies a chunk of pre-allocated local memory

• MPI_Win_allocate
– MPI will allocate local memory for the window

• MPI_Win_allocate_shared
– MPI will allocate local memory for the window and guarantee that all

processes can access it as shared-memory

• MPI_Win_dynamic
– Each process can attach and detach pre-allocated local memory

MPI_WIN_CREATE

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win)

• “base”: in C, this is a pointer to the beginning of the memory
– In Fortran pass the (first element of) a simply-contiguous array

• “size”: is in bytes – it is not scaled by disp_unit

• “disp_unit”: is in bytes and can be 1, for no scaling
– Supply sizeof(some_type) to use array indices in other RMA calls

• “info”: provide hints about window usage
– For example, no_locks, same_size, same_disp_unit

• “comm”: defines which processes participate

• “win”: the output opaque handle for the created window

MPI_WIN_ALLOCATE[_SHARED]

int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info
info, MPI_Comm comm, void *baseptr, MPI_Win *win)

• “baseptr”: output pointer to beginning of allocated memory

• “comm”: for the shared variant, comm must only contain
processes that can participate in a shared memory segment

• Restrictions and advice concerning MPI_ALLOC_MEM also
apply to these allocating window creation functions

• Additional info key: alloc_shared_noncontig

• Memory consistency only specified for unified memory model

• MPI_Win_shared_query gets “baseptr” for other processes

MPI_WIN_CREATE_DYNAMIC

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm
comm, MPI_Win *win)

• “info”, “comm” and “win” have same meaning as before

• No memory is attached during creation of the window

• Memory must be attached at target before any origin uses it

int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

• “win”, “base” and “size” are supplied when attaching memory

• “disp_unit” is always implicitly set to 1 for dynamic windows

• “window_base” is implicitly set to MPI_BOTTOM not “base”

Miscellaneous window operations

• MPI_Win_get_attr
– Get values of the attributes associated with the window
– Characteristics that were set during creation of the window

• MPI_Win_get_info and MPI_Win_set_info
– Get and set the info keys associated with the window

• MPI_Win_get_group
– Get the group of the communicator used to create the window

• MPI_Win_free
– Tidies up by destroying the window and freeing MPI resources

• MPI_Win_create_errhandler and MPI_Win_set_errhandler
– Change the default error handler for the window

Memory models

• Old “separate” memory model
– Old model still supported, now called the “separate” memory model

• New “unified” memory model
– Simplifies memory consistency rules on cache-coherent machines

• Discovered via the MPI_Win_model attribute on the window

• Semantics are described using “public” and “private” copies
– Each variable has a “private” copy in process-local memory
– Each window has a “public” copy of all variables within the window
– In the separate model, all these copies are logically separate and may

or may not be affected by updates to other copies
– In the unified model, all these copies are logically unified and will

definitely be affected by updates to other copies, eventually

• Synchronisation is always needed to guarantee consistency

Single-sided data movement operations

• All RMA communication calls are non-blocking
– Buffers cannot be accessed until the operation has completed

• MPI_Put
– Moves data from a specified buffer at the origin process to a

specified location in a window at the target process

• MPI_Get
– Moves data to a specified buffer at the origin process from a

specified location in a window at the target process

• MPI_Accumulate
– Like MPI_Put (data moves from origin to target) but combines the

transmitted value with the value already at the target
– Any built-in (not user-defined) MPI reduction operation can be used

RMA synchronisation

• Two methods of synchronisation: active and passive target
– Defines whether the target is involved in the synchronisation or not

• Four different sets of synchronisation operations
– Two are active target methods; two are passive target methods

• A process can be an origin only during an access epoch
– “origin” means caller of MPI single-sided communication operation(s)

• Access epoch is opened by a synchronisation call at origin
– And closed by a subsequent synchronisation call

• For active target methods, a process can be a target only
during an exposure epoch
– Exposure epoch opened and closed by synchronisation calls at target

RMA synchronisation operations

• Active target – fence
– How to use: collective call to MPI_Win_fence
– Closes previous, and opens new, access and exposure epochs

• General active target – PSCW or Post-Start-Complete-Wait
– How to use at origin 1: MPI_Win_start opens access epoch
– How to use at origin 2: MPI_Win_complete opens access epoch
– How to use at target 1: MPI_Win_post opens exposure epoch
– How to use at target 2: MPI_Win_wait opens exposure epoch

• Passive target – shared/exclusives ‘locks’
– How to use for shared locks: MPI_Lock, MPI_Unlock
– How to use for exclusive locks: MPI_Lock_all, MPI_Unlock_all
– This is badly named! It is not really locks, more like transactions
– No concept of exposure epoch (can use MPI_Win_flush and _sync)

Atomic operations

• New atomic read-modify-write operations in MPI-3

• MPI_Get_accumulate
– Fetches previous value of target before accumulation with origin data

• MPI_Fetch_and_op
– Restricted version of MPI_Get_accumulate for hardware operations

• MPI_Compare_and_swap
– Origin sends a compare value and new value
– If the target value and the compare value are equal then

– The target value is replaced with the new value
– Old target value is always returned to origin process

Local completion

• New local completion semantics for one-sided operations
– Only valid during a passive target epoch

• MPI_Rput, MPI_Rget, MPI_Raccumulate and
MPI_Rgetaccumulate return a MPI_Request object handle

• Use MPI_Test or MPI_Wait to check for local completion

• Cannot call MPI_Request_free, MPI_Cancel or MPI_Start

• Only the MPI_Error field in the status object is set correctly
– All other field return undefined values

• Must complete the request (by testing or wating)
– Even if the operation is known to be complete, e.g. by MPI_Win_flush

Summary

• Data movement and synchronisation are separate calls

• All parameters for data movement specified by ‘one side’

• Basic operations are put/get direct into/from remote memory

• Complexity comes from consistency and synchronisation

• Two memory consistency models: separate and unified

• Two types of synchronisation: active and passive

• Atomic operations

• Local completion

• Only worth the implementation effort for some applications

