
David Henty
EPCC

The University of Edinburgh

Asynchronous
Parallel Methods

Overview

• What’s the problem?

• What is an asynchronous method?

• Reducing synchronisation in existing models

• Asynchronous algorithms

• Removing all synchronisation

• Summary

28 October 2015 Asynchronous Methods 2

The Problem

• Synchronisations often essential for program correctness
– waiting for an MPI receive to complete before reading from buffer
– barriers at the end of an OpenMP parallel loop
– …

• But they cost time
– and slow down the calculation

• Cost is usually not the synchronisation operation itself
– it is waiting for other tasks to catch up with each other
– all calculations have some load imbalance from random fluctuations
– a real problem as we increase the number of cores

• Try to reduce synchronisation
– and let things happen in their “natural” order

28 October 2015 Asynchronous Methods 3

Reference

• See:
– “The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q”

– Fabrizio Petrini, Darren J. Kerbyson, Scott
Pakin

– hpc.pnl.gov/people/fabrizio/papers/sc03_noise.pdf

– “[W]hen you have eliminated the impossible,
whatever remains, however improbable, must
be the truth.”

– Sherlock Holmes, Sign of Four, Sir Arthur
Conan Doyle

28 October 2015 Asynchronous Methods 4

An example

• “Although SAGE [the application]
spends half of its time in allreduce (at
4,096 processors), making allreduce
seven times faster leads to a negligible
performance improvement.”

• Collectives an extreme example
– point-to-point is also an issue

28 October 2015 Asynchronous Methods 5
SAGE time per iteration

Collectives

• Reduce frequency of calculation by a factor X
– e.g. MPP coursework: trade more calculation for fewer synchronisations

• Possible because array updates independent of global values
– may not be true for, e.g., Conjugate Gradient
– can use different algorithms, e.g. Chebyshev iteration
– again, more iterations but less synchronisation

28 October 2015 Asynchronous Methods 6

loop over iterations:
update arrays;
compute local delta;
compute global delta
using allreduce;
stop if less than
tolerance value;

end loop

loop over iterations:
update arrays;
every X iterations:
local delta;
global delta;
can we stop?;

end loop

Shared memory barriers

• (Almost) never required for MPI program correctness

• OpenMP
– remove with nowait

– essential to check that this gives correct answers
28 October 2015 Asynchronous Methods 7

OMP parallel
OMP loop #1
loop i=1:M
calculation 1

end loop #1
OMP no wait
OMP loop #2
loop j=1:N
calculation 2

end loop #2
OMP end parallel

PGAS barriers

• Simple CAF

• Only require synchronisation with immediate neighbours
– replace sync all with sync images

28 October 2015 Asynchronous Methods 8

loop over iterations:
update halos:
remote reads or writes;
sync all;

update arrays;

wait for updates to
complete on all images:

sync all;
end loop

3D Halo Swaps (10x10x10 array)

Asynchronous Methods 928 October 2015

Point-to-point

• Do not impose unnecessary ordering of messages
– e.g. pi calculation

– loop now just counts the correct number of messages

• Alternative
– first issue a separate non-blocking receive for each source
– then issue a single Waitall

28 October 2015 Asynchronous Methods 10

loop over sources:
receive value from
particular source;

end loop

loop over sources:
receive value from
any source;

end loop

Halo swapping

• Do not impose unnecessary ordering of messages
– e.g. MPP coursework

• Extensions
– can now overlap communications with core calculation
– only need to wait for receives before non-core calculation
– wait for sends to complete before starting next core calculation

28 October 2015 Asynchronous Methods 11

loop over directions:
send up; recv down;
send down; recv up;

end loop

loop over directions:
isend up; irecv down;
isend down; irecv up;

end loop
wait on all requests;

Deep halos

• Use less frequent communication
– smaller number of larger messages; increased computation

• Normal halos on old(6,6)

28 October 2015 Asynchronous Methods 12

halo swap

loop i=1:M; j=1:N;
new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)
– edge(i,j))

Halos of Depth D

28 October 2015 Asynchronous Methods 13

halo swap

loop d=D:1:-1

loop i=2-d:M+d-1; j=2-d:N+d-1;
new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

+ old(i,j-1) + old(i,j+1)
– edge(i,j))

Swap depth D every D iterations

28 October 2015 Asynchronous Methods 14

• Need diagonal communications
– and must swap halos of depth D-1 on edge(i,j)

Implementation

• Do 8 non-blocking sends and 8 non-blocking receives
– as opposed to only 4 for depth=1
– or 26 vs 6 for three dimensions

• Can “carry” halos rather than explicit diagonal comms
– ordered swaps: left/right after up/down …
– … but introduces more synchronisation

• Quite hard to implement in practice
– D=1 is (thankfully) a special case for 5-point stencil

28 October 2015 Asynchronous Methods 15

