CPCC

Scientific Computing
Cellular Automaton Exercise

Aim

The aim of this exercise is to design serial and parallel algorithms to run a simple cellular automaton
which attempts to model traffic flow. You should write some code to implement the serial algorithm

The Model

The simulation box is a line of IV cells numbered 1,2, ..., N — 1, N (the road) which can each only have
two values: 1 if a car is present on that section of road; 0 if it is empty. We will denote the value of cell
number i at time ¢ by R (7).

The update rules for each time step are very simple:

e if the space in front of a car is empty then it moves forward one cell;

e otherwise it stays where it is.

Remember that we proceed through a series of iterations where the values of the cells at time ¢+ 1 depend
entirely on the values at time ¢. In other words you should be able to apply the update rules to the cells at
time ¢ in any order and you should still get the same values at ¢ + 1.

After each iteration we compute the average velocity of the cars. This is calculated as the number of cars
that move in an iteration divided by the total number of cars, and is a value between 0 and 1.

We use periodic boundary conditions, i.e. when a car moves off the right-hand-side of the road it reap-
pears on the left, and vice-versa (this is the same as saying we are simulating a roundabout rather than a
straight section of road). To do this, we identify R'(0) (the cell to the left of cell number 1) with R*(N)
and R'(N + 1) (the cell to the right of cell number N) with R*(1).

1 Rules for Cellular Automaton

It should be fairly clear that, when we update to a new time step, the new value R**!(i) depends on its
old value at time ¢, and also on the old values of the neighbours. In other words, R**!(i) depends on the
three values R*(i — 1), R'(:) and R'(i + 1).

You should fill in Table 1 and Table 2 to get the explicit form of the update rules for this cellular
automaton. For convenience, we have split the 8 possible cases into two tables, one for an initially empty
cell R(i) = 0, and the other for a full cell R!(i) = 1. Writing things out in this explicit form you can
see that there are in fact 256 possible 1D cellular automata (each corresponding to different update rules),
but very few of them are in fact of any interest!

R'(i—1)=0| R'(i—1)=1

R'(i+1)=0
R'(i+1)=1

Table 1: Values of R'T1(3) if R (i) = 0

R(i—1)=0] R(i—1)=1

R'(i+1)
R'(i+1)

0
1

Table 2: Value of RIT1(i) if RY(i) =1

2 Serial Program

Having written the update rules, write some code (in any programming language) that implements
them for a road of length N. The easiest approach is to have two arrays, one corresponding to the old
values at time ¢ and the other to the new values at t+1. Loop through the cells computing the values of the
the new array based on old. After each complete time step, copy the new array back to old in preparation
for the next time step. You must consider how to implement the periodic boundary conditions.

We need to define some initial conditions, i.e. the state of the road at time ¢ = 0. This is best done using
a random number generator; such generators typically return a real value distributed evenly between
0.0 and 1.0. We need to generate an initial road with a specific density of cars, e.g. we might want a
reasonably congested road with a density of 0.75 (where, on average, three out of four cells are occupied):

loop over the wholeroad? =1,2,...,N — 1, N

pick a random number rand in the range 0.0 to 1.0.

if rand < density
- set R(i) =1
o clse
- set R%(i) =0
e end loop over 7

It is easy to see that this works for densities of 0.0 and 1.0 (random number generators normally have the
range 0.0 < rand < 1.0), and in fact works for any value of the density.

2.1 Experiments

The aim is to reproduce the graph of average velocity versus car density that was outlined in the lectures.
e pick a large value for N, a few thousand should suffice
e choose a target value for the car density
e initialise the road as above
e compute the actual density which will be close to (but not exactly the same as) your target
e loop over many time stepst = 0,1,2, ...
— update the road from time ¢ to ¢ + 1 by updating all the cells
— compute the average car velocity for this time step

e end loop over time steps

You should do this for a range of densities to map out how the average velocity depends on density,
and plot a graph of the results.

You can just use a single (large) value of IV, although you could check that the results do not depend
strongly on this value (e.g. run two simulations of size N and 2N for the same density).

Here are a few hints to help you:

1. As the initial distribution of cars is entirely random, the simulation may take many time steps to
settle down to a steady state. You should see the velocity varying with time step, but eventually
settling down to a fairly steady value. What you are looking for is the asymptotic velocity, i.e. the
average velocity per step after many time steps.

2. The amount of time taken to reach this steady state depends on the density (and the road length
N), so it may take some experimentation to find out how long to run the model.

3. To check your code is correct, try a few simple examples where you know the answer:

e asolid road (density of 1.0) should have velocity 0.0
e asolitary car should move forward with velocity 1.0

o if you fill half of the road with cars in a line and leave the other half free, the average velocity
should increase linearly with time step until it reaches a maximum of 1.0 after N/2 time steps
(think of the cars at a set of traffic lights)

e the number of cars should always remain the same

3 Parallelisation

Examine the code that you have just written and consider how you would split up the calculation among
multiple processors. Points to consider include:

e What parts of the calculation could be done independently and what parts would require some form
of cooperation (ag synchronisation or communication)?

e What is the best way to handle any communications in your parallel code?

e Is it possible to implement both the boundary conditions and the communications using the same
basic approach?

Remember also that you not only have to update the cars at each generation, but you also have to compute
the total number of cars that move in order to calculate the velocity.

4 Message Passing Implementation

How would you implement your parallel scheme using a message-passing programming model on a
distributed-memory parallel machine? Points to consider include:

e How would you divide the data amongst the different processes?
e When is communications required?

e How would you calculate the velocity at each time step?

Write some pseudo-code to illustrate your solution, assuming that you have access to simple routines to
send and receive data between processes. You should consider two cases:

1. sending data is done asynchronously like sending a letter;

2. sending data is done synchronously like making a phone call.

Be careful to avoid deadlock, particularly in the second case.

If you prefer to think of an analogy, imagine that you and a friend want to simulate the traffic model by
hand on the blackboards in your offices. You decide to split the calculation between you, and luckily
your offices are relatively nearby. Unfortunately, the sound insulation is very good and you don’t have a
phone, so the only way to communicate is to go and speak to each other. You each can also only work
in your own office as the blackboards are only large enough to hold half of the road. How would you
organise the calculation? Try and come up with a scheme that minimises the number of times you have
to get up and leave your office. How would you generalise your algorithm for three, four or eight people?

S Shared Variables Implementation

How would you implement your parallel scheme using a shared-variables programming model on a
shared-memory parallel machine? Points to consider include:

e How would you divide the calculation amongst the different threads?

What data is shared and what is private?

When is synchronisation required?

How would you calculate the velocity at each time step?

Write some pseudo-code to illustrate your solution assuming that you have access to simple routines to
create and manage multiple threads.

If you prefer an analogy, imagine that you and a friend want to simulate the traffic model by hand on a
single large blackboard. The blackboard can hold all of the road and you and your friend can both work
in the same office. You both also have private notebooks, but unfortunately you are now not allowed to
speak to each other as it would make too much noise. How would you organise the calculation when you
can only communicate by writing to and reading from the blackboard? Try and come up with a scheme
that maximises the amount of time you both spend doing useful work. What variables should be shared
(i.e. a single copy on the blackboard) or private (i.e. separate copies in each of your notebooks)? How
would you generalise your algorithm for three, four or eight people?

5.1 Extra exercise

Can you guarantee that your method will give exactly identical answers if you repeat the calculation
more than once using the same number of threads (or people)? What about using a different number of
threads?

