
Exercise: Planetary Orbits

Toni Collis and David Henty

October 28, 2015

1 Introduction

The problem here is to examine the evolution of a two body gravitational sys-
tem. An analytic solution can be derived so that, for this special case, you can
compare the numerical solution with a known exact answer. However, for most
systems that might be considered, the analytic result is not known. Instead,
diagnostics like conserved quantities must be relied on (for example, the value
of the total energy should remain a constant).

The aim of this exercise is to understand what the errors are in a simple
numerical molecular dynamics (in this case orbits) problem. A template is
provided in either C or Fortran. The template sets up the simulation and has a
simple first order Euler integration scheme implemented. You have to:

• compare the orbits of the simulations

• examine the effect of changing the integration step size

• implement the leapfrog integration scheme

The code produces plots which can be viewed using the application xmgrace
- you need to type module load xmgrace on ARCHER.

The exercise illustrates a number of key concepts:

• The major error in simulations like these is the truncation error, i.e. how
accurately we can model the real-world equations.

• The simple Euler algorithm has a truncation error proportional to the
time step.

• The Leapfrog algorithm has a truncation error proportional to the square
of the time step.

• This means that the Leapfrog algorithm is vastly superior, i.e. for a given
error in the change in the total energy (which should be zero), this can
be achieved using a much large time step in the Leapfrog algorithm and
hence a much shorter computation time.

1



2 Planetary orbits

If the potential for a system U(r) ∼ 1/r, the resulting two-body orbits fall into
one of four possible classes of solution.

The resultant orbit is independent of the interaction being considered, be
it gravitational, electrostatic or something else. The orbit is defined by its
eccentricity, e.

Circle e = 0
Ellipse 0 < e < 1
Parabola e = 1
Hyperbola e > 1

3 Code

The template files are in both C and Fortran. In addition, the setup of the
simulation can changed with the input file params.dat. This is a text file which
allows you to set parameters as shown:

1.0 # Eccentricity of orbit

1.0 # Pericentric distance

1000.0 # Mass of first object

0.1 # Mass of second object (less than first)

75.0 # Initial separation

20.0 # End time for simulation

0.0001 # timestep size

Changing the eccentricity changes the type of orbit. The pericentric distance
is the distance of closest approach. These can be varied to explore different
orbits. The masses of the two objects are chosen so that simulation is of a small,
light object orbiting around a static, massive object. The initial separation is
the initial condition. In principle any of the parameters can be varied, but
for the purposes of this exercise, only the eccentricity, pericentric distance and
timestep size should be changed.

4 Exercise

4.1 Changing the orbit

The default params.dat simulates a comet orbiting the sun. Familiarise yourself
with the code. What happens to the trajectory when the step size is changed?
How would you go about verifying the trajectory if you didn’t know the analytic
solution? You can view the trajectory using xmgrace trajectory.agr, or the
energy change with xmgrace energy.agr

2



4.2 Implement leapfrog integration

Implement a leapfrog integration scheme in the code. This requires three
changes: the changes required are indicated in the code as comments – search
for comments containing “Leapfrog”.

Check that the solution is correct. Compare the graphs of the energy with
those from Euler integration as a function of the timestep size. Can you see any
qualitative difference? Recall, the leapfrog integration scheme integrates the
position r and velocity v as a function of time, where a(t) is the acceleration.

r(t + ∆t) = r(t) + v(t + 1/2∆t)×∆t (1)

v(t + 1/2∆t) = v(t− 1/2∆t) + a(t)×∆t (2)

Note that this algorithm is not self-starting, you need one step of Euler
integration to step either the position or the velocity by a half timestep. Also
you need to calculate the velocity before the position due to the half time step.

4.3 Plotting the error

To quantify the difference in solution accuracy using these different integration
schemes, we need to consider the energy during the simulation. Calculate the
error in the total energy:

∆E = Einitial − Efinal (3)

and plot ∆E against ∆t (the timestep size) on a log-log plot.
Suppose the relationship between the two variables is of the form:

∆E ∝ (∆t)m

where m depends on the integration scheme. By taking the logarithm of both
sides of the equation we obtain

log ∆E ∝ m log ∆t

and so the power m becomes the gradient on the log-log plot. Measure the
gradient, and thus the power of the error in the step size for both schemes. This
behaviour is best seen with closed orbits - see params-closed.dat.

4.4 Summing up

This exercise has looked at Euler and leapfrog integration schemes for a simple
two-body problem. The simulations already display complex behaviour, so it
is useful to study this simple scheme where we can derive an analytic result to
study the error our discretisation introduces. For real calculations with many
bodies, more advanced integration schemes can be used. Adaptive step sizes and
higher-order integration schemes are beyond the scope of this exercise. How-
ever, the lesson here is (hopefully) that you should always study the error in a
simulation as much as the final result itself.

3


