Computer Simulation

Traffic Modelling

Traffic Flow

- we want to predict traffic flow
 - to look for effects such as congestion
- build a computer model

Simple Traffic Model

- divide road into a series of cells
 - either occupied or unoccupied
- perform a number of steps
 - each step, cars move forward if space ahead is empty

could do this by moving pawns on a chess board

traffic behaviour

- model predicts a number of interesting features
- traffic lights

more
 complicated
 models are
 used in practice

density of cars

how fast can we run the model?

- measure speed in Car Operations Per second
 - how many COPs?

around 2 COPs

modelling (of traffic)

pawns on a chessboard

update rules

real traffic

modelled by hand

modelled in parallel

computer simulation (of the weather)

$$\frac{\partial \rho}{\partial t} + \nabla . \rho \mathbf{u} = 0$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P - 2\mathbf{\Omega} \times \mathbf{u} + \eta \nabla^2 \mathbf{u}$$

$$\frac{\partial T}{\partial t} + \nabla .\mathbf{u}T = \kappa \nabla^2 T + \mathcal{F}.$$

real weather

mathematomputer simulations equations requires trillions of FLOPS

 $u_i = (1-w)u_i + w\left(\frac{1}{2+ah}\right)(u_{i-1} + (1+ah)u_{i+1})$ (not COPS!)

parallel program

begin program weather
double precision u(60,60,25)
do i = 1, n

numerical solution methods

computer program

parallel weather modelling

