
Matrices

Basic Linear Algebra

2 Basic Linear Algebra

Overview

Lecture will cover
– why matrices and linear algebra are so important

– basic terminology

– Gauss-Jordan elimination

– LU factorisation

– error estimation

– libraries

Linear algebra

In mathematics linear algebra is the study of

linear transformations and vector spaces…

…in practice linear algebra is the study of

matrices and vectors

Many physical problems can be formulated in

terms of matrices and vectors

3 Basic Linear Algebra

4 Basic Linear Algebra

Health Warning

Don’t let the terminology scare you
– concepts quite straightforward, algorithms easily understandable

– implementing the methods is often surprisingly easy

– but numerous variations (often for special cases or improved

numerical stability) lead to an explosion in terminology

Basic matrices and vectors

5 Basic Linear Algebra

Matrix

Vector

A matrix multiplied by a vector gives another vector

6 Basic Linear Algebra

Linear Systems as Matrix Equations

Many problems expressible as linear equations
– two apples and three pears cost 40 pence

– three apples and five pears cost 65 pence

– how much does one apple or one pear cost?

Express this as

Or in matrix form

– matrix x vector = vector

7 Basic Linear Algebra

Standard Notation

For a system of N equations in N unknowns

– coefficients form a matrix A with elements aij

– unknowns form a vector x with elements xi

– solution forms a vector b with elements bi

All linear equations have the form A x = b

8 Basic Linear Algebra

Matrix Inverse

A x = b implies A-1A x = x = A-1 b
– simple formulae exist for N=2

Rarely need (or want) to store the explicit inverse
– usually only require the solution to a particular set of equations

Algebraic inversion impractical for large N
– use numerical algorithms such as Gaussian Elimination

9 Basic Linear Algebra

Simultaneous Equations

Equations are:
 2a + 3 p = 40 (i)

 3a + 5 p = 65 (ii)

– computing 2 x (ii) - 3 x (i) gives p = 130 - 120 = 10

– substitute in (i) gives a = 1/2 x (40 - 3 x 10) = 5

Imagine we actually had
2.00000 a + 3.00000 p = 40.00000 (i)

4.00000 a + 6.00001 p = 80.00010 (ii)

(ii) - 2 x (i) gives (6.00001 - 6.00000) p = (80.00010 - 80.00000)

– cancellations on both sides may give inaccurate numerical results

– value of p comes from multiplying a huge number by a tiny one

How can we tell this will happen in advance?

10 Basic Linear Algebra

Matrix Conditioning

Characterise a matrix by its condition number
– gives a measure of the range of the floating point numbers that

will be required to solve the system of equations

A well-conditioned matrix
– has a small condition number

– and is numerically easy to solve

An ill-conditioned matrix
– has a large condition number

– and is numerically difficult to solve

A singular matrix
– has an infinite condition nymber

– is impossible to solve numerically (or analytically)

11 Basic Linear Algebra

Calculating the Condition Number

Easy to compute condition no. for small problems

 2a + 3 p = 40

 3a + 5 p = 65

– has a condition number of 46 (ratio of largest/smallest eigenvalue)

 2.00000 a + 3.00000 p = 40.00000

 4.00000 a + 6.00001 p = 80.00010

– has condition number of 8 million!

Very hard to compute for real problems
– methods exist for obtaining good estimates

12 Basic Linear Algebra

Relevance of Condition Number

Gives a measure of the range of the scales of

numbers in the problem
– eg if condition number = 46, largest number required in

calculation will be roughly 46 times larger than smallest

– if condition number = 107, this may be a problem for single

precision where we can only resolve one part in 108

May require higher precision to solve ill-

conditioned problems
– in addition to a robust algorithm

13 Basic Linear Algebra

Gauss-Jordan Elimination

The technique you may have learned at school
– subtract rows of A from other rows to eliminate off-diagonals

– must perform same operations to RHS (i.e. b)

Pivoting
– using row p as the pivot row (p=1 above) implies division by app

– very important to do row exchange to maximise app

– this is partial pivoting (full pivoting includes column exchange)

sweep

eliminate

14 Basic Linear Algebra

Observations

Gauss-Jordan is a simple direct method
– we know the operation count at the outset, complexity O(N3)

Possible to reduce A to purely diagonal form
– solving a diagonal system is trivial

– better to reduce to upper triangular - Gaussian Elimination

15 Basic Linear Algebra

Operate on active sub-matrix of decreasing size

Solve resulting system with back-substitution
– can compute x4 first, then x3, then x2, etc...

Gaussian Elimination

16 Basic Linear Algebra

LU Factorisation

Gaussian Elimination is a practical method
– must do partial pivoting and keep track of row permutations

– restriction: must start a new computation for every different b

Upper-triangular system U x = b easy to solve
– likewise for lower-triangular L x = b using forward-substitution

Imagine we could decompose A = LU
– A x = (LU) x = L (Ux) = b

– first solve Ly = b then Ux = y

– each triangular solve has complexity O(N2)

But how do we compute the L and U factors?

17 Basic Linear Algebra

Computing L and U

Clearly only have N2 unknowns
– assume L is unit lower triangular and U is upper triangular

– writing out in full

18 Basic Linear Algebra

Implementation

Can pack LU factors into a single matrix

RHS computed in columns
– once lij or uij is calculated, aij is not needed any more

– can therefore do LU decomposition in-place

– elements of A over-written by L and U

– complexity is O(N3)

19 Basic Linear Algebra

Crout’s Algorithm

Replaces A by its LU decomposition
– implements pivoting, ie decomposes row permutation of A

– computation of lij requires division by ujj

– can promote a sub-diagonal lij as appropriate

– essential for stability with large N

Loop over columns j
– compute uij for i = 1, 2 ... j

– compute lij for i = j+1, j+2 .. N

– pivot as appropriate before proceeding to next column

See, e.g., Numerical Recipes section 2.3

20 Basic Linear Algebra

Procedure

To solve Ax = b
– decompose A into L and U factors via Crout’s algorithm

– replaces A in-place

– set x = b

– do in-place solution of Lx = x (forward substitution)

– do in-place solution of Ux = x (backward substitution)

Advantages
– pivoting makes the procedure stable

– only compute LU factors once for any number of vectors b

– subsequent solutions are O(N2) after initial O(N3) factorisation

– to compute inverse, solve for a set of N unit vectors b

– determinant of A can be computed from the product of uii

21 Basic Linear Algebra

Quantifying the Error

We hope to have solved Ax = b
– there will inevitably be errors due to limited precision

– can quantify this by computing the residual vector r = b - Ax

– typically quote the root-mean-square residue

– length defined by L2 norm (“two-norm”) - other norms exist

^

Linear algebra libraries

Linear Algebra is a well constrained problem
– can define a small set of common operations

– implement them robustly and efficiently in a library

– mainly designed to be called from Fortran (see later ...)

Often seen as the most important HPC library
– eg LINPACK benchmark is standard HPC performance metric

– solve a linear system with LU factorisation

– possible to achieve performance close to theoretical peak

Linear algebra is unusually efficient
– LU decomposition has O(N3) operations for O(N2) memory

loads

BLAS

Basic Linear Algebra Subprograms
– Level 1: vector-vector operations (e.g. x·y)

– Level 2: matrix-vector operations (e.g. Ax)

– Level 3: matrix-matrix operations (e.g. AB)

 (x, y vectors, A, B matrices)

Example: SAXPY routine

single precision x + y a
(scalar)

y is replaced “in-place” with a x + y

LAPACK

LAPACK is built on top of BLAS libraries
– Most of the computation is done with the BLAS libraries

Original goal of LAPACK was to improve upon

previous libraries to run more efficiently on

shared memory and multi-layered systems
– Spend less time moving data around!

LAPACK uses BLAS 3 instead of BLAS 1

– matrix-matrix operations more efficient than vector-vector

Always use libraries for Linear Algebra

LU factorisation

LU factorisation
– call SGETRF(M, N, A, LDA, IPIV, INFO)

– does an in-place LU factorisation of M by N matrix A

• we will always consider the case M = N

– A can actually be declared as REAL A(NMAX,MMAX)

• routine operates on M x N submatrix

• must tell the library the Leading Dimension of A, ie set
LDA=NMAX

– INTEGER IPIV(N) returns row permutation due to pivoting

– error information returned in the integer INFO

Solving: Forward/backward

substituion

Forward / backward substitution
– call

SGETRS(TRANS,N,NRHS,A,LDA,IPIV,B,LDB,INFO)

– expects a factored A and IPIV from previous call to SGETRF

– solves for multiple right-hand-sides, ie B is N x NRHS

– we will only consider NRHS=1, ie RHS is the usual vector b

– solution x is returned in b (ie original b is destroyed)

Options exist for precise form of equations
– specified by character variable TRANS

– ‘N’ (Normal), ‘T’ (Transpose)

 A x = b AT x = b

27 Basic Linear Algebra

Summary

Dense matrices arise from linear equations
– standard notation is Ax = b

Matrices characterised by their condition number
– equations difficult to solve numerically have large condition number

• an ill-conditioned matrix

– may lead to large errors in our solution so always quantify the error

Have covered direct solution methods for Ax = b
– all are basically variants of Gaussian Elimination

– rather than storing A-1, compute the LU factors of A

– can then solve further equations Ax = c, Ax = d, ... at little extra cost

– the larger the condition number, the harder the problem

– pivoting is essential in practice for numerical stability

Always use libraries for Linear Algebra

