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Overview 

Lecture will cover 
– why matrices and linear algebra are so important 

– basic terminology 

– Gauss-Jordan elimination 

– LU factorisation 

– error estimation 

– libraries 

 



Linear algebra 

In mathematics linear algebra is the study of 

linear transformations and vector spaces… 

…in practice linear algebra is the study of 

matrices and vectors 

Many physical problems can be formulated in 

terms of matrices and vectors 
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Health Warning 

Don’t let the terminology scare you 
– concepts quite straightforward, algorithms easily understandable 

– implementing the methods is often surprisingly easy 

– but numerous variations (often for special cases or improved 

numerical stability) lead to an explosion in terminology 

 

 



Basic matrices and vectors 
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Matrix 

 

Vector 

 

 

 

 

 

 

A matrix multiplied by a vector gives another vector 
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Linear Systems as Matrix Equations 

Many problems expressible as linear equations 
– two apples and three pears cost 40 pence 

– three apples and five pears cost 65 pence 

– how much does one apple or one pear cost? 

 

Express this as 

 

Or in matrix form 
 

– matrix x vector = vector 
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Standard Notation 

For a system of N equations in N unknowns 
 

 

 

 

 

 

– coefficients form a matrix A with elements aij 

– unknowns form a vector x with elements xi 

– solution forms a vector b with elements bi 

 

All linear equations have the form A x = b 
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Matrix Inverse 

A x = b implies A-1A x = x = A-1 b 
– simple formulae exist for N=2 

 

 

 

 

 

 

Rarely need (or want) to store the explicit inverse 
– usually only require the solution to a particular set of equations 

Algebraic inversion impractical for large N 
– use numerical algorithms such as Gaussian Elimination 
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Simultaneous Equations 

Equations are: 
 2a + 3 p = 40 (i) 

 3a + 5 p = 65 (ii) 

– computing 2 x (ii) - 3 x (i) gives p = 130 - 120 = 10 

– substitute in (i) gives a = 1/2 x (40 - 3 x 10) = 5 

Imagine we actually had 
2.00000 a + 3.00000 p = 40.00000 (i) 

4.00000 a + 6.00001 p = 80.00010 (ii) 

(ii) - 2 x (i) gives (6.00001 - 6.00000) p = (80.00010 - 80.00000) 

– cancellations on both sides may give inaccurate numerical results 

– value of p comes from multiplying a huge number by a tiny one 

How can we tell this will happen in advance? 
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Matrix Conditioning 

Characterise a matrix by its condition number 
– gives a measure of the range of the floating point numbers that 

will be required to solve the system of equations 

A well-conditioned matrix 
– has a small condition number 

– and is numerically easy to solve 

An ill-conditioned matrix 
– has a large condition number 

– and is numerically difficult to solve 

A singular matrix 
– has an infinite condition nymber 

– is impossible to solve numerically (or analytically) 
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Calculating the Condition Number 

Easy to compute condition no. for small problems 
 

 2a + 3 p = 40 

 3a + 5 p = 65 

 

– has a condition number of 46 (ratio of largest/smallest eigenvalue) 

 

 2.00000 a + 3.00000 p = 40.00000 

 4.00000 a + 6.00001 p = 80.00010 

 

– has condition number of 8 million! 

 

Very hard to compute for real problems 
– methods exist for obtaining good estimates 
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Relevance of Condition Number 

Gives a measure of the range of the scales of 

numbers in the problem 
– eg if condition number = 46, largest number required in 

calculation will be roughly 46 times larger than smallest 

 

– if condition number = 107, this may be a problem for single 

precision where we can only resolve one part in 108 

 

May require higher precision to solve ill-

conditioned problems 
– in addition to a robust algorithm 
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Gauss-Jordan Elimination 

The technique you may have learned at school 
– subtract rows of A from other rows to eliminate off-diagonals 

– must perform same operations to RHS (i.e. b) 

 

 

 

 

 

 

Pivoting 
– using row p as the pivot row (p=1 above) implies division by app 

– very important to do row exchange to maximise app 

– this is partial pivoting (full pivoting includes column exchange) 

 

sweep 

eliminate 
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Observations 

Gauss-Jordan is a simple direct method 
– we know the operation count at the outset, complexity O(N3) 

 

Possible to reduce A to purely diagonal form 
– solving a diagonal system is trivial 

 

 

 

 

 

 

 

– better to reduce to upper triangular - Gaussian Elimination 
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Operate on active sub-matrix of decreasing size 

 
 

 

 

 

Solve resulting system with back-substitution 
– can compute x4 first, then x3, then x2, etc... 

Gaussian Elimination 
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LU Factorisation 

Gaussian Elimination is a practical method 
– must do partial pivoting and keep track of row permutations 

– restriction: must start a new computation for every different b 

 

Upper-triangular system U x = b easy to solve 
– likewise for lower-triangular L x = b using forward-substitution 

 

Imagine we could decompose A = LU 
– A x = (LU) x = L (Ux) = b 

– first solve Ly = b then Ux = y 

– each triangular solve has complexity O(N2) 

 

But how do we compute the L and U factors? 
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Computing L and U 

Clearly only have N2 unknowns  
– assume L is unit lower triangular and U is upper triangular 

 

 
 

 

– writing out in full  
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Implementation 

Can pack LU factors into a single matrix 

 

 

 

 

RHS computed in columns 
– once lij or uij is calculated, aij is not needed any more 

– can therefore do LU decomposition in-place 

– elements of A over-written by L and U 

– complexity is O(N3) 
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Crout’s Algorithm 

Replaces A by its LU decomposition 
– implements pivoting, ie decomposes row permutation of A 

– computation of lij requires division by ujj 

– can promote a sub-diagonal lij as appropriate 

– essential for stability with large N 

 

Loop over columns j 
– compute uij for i = 1, 2 ... j 

– compute lij for i = j+1, j+2 .. N 

– pivot as appropriate before proceeding to next column 

 

See, e.g., Numerical Recipes section 2.3 
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Procedure 

To solve Ax = b 
– decompose A into L and U factors via Crout’s algorithm 

– replaces A in-place 

– set x = b 

– do in-place solution of Lx = x (forward substitution) 

– do in-place solution of Ux = x (backward substitution) 

Advantages 
– pivoting makes the procedure stable 

– only compute LU factors once for any number of vectors b 

– subsequent solutions are O(N2) after initial O(N3) factorisation 

– to compute inverse, solve for a set of N unit vectors b 

– determinant of A can be computed from the product of uii 
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Quantifying the Error 

We hope to have solved Ax = b 
– there will inevitably be errors due to limited precision 

– can quantify this by computing the residual vector r = b - Ax 

– typically quote the root-mean-square residue 

 

 

 

– length defined by L2 norm (“two-norm”) - other norms exist 

 

 

 

^ 



Linear algebra libraries 

Linear Algebra is a well constrained problem 
– can define a small set of common operations 

– implement them robustly and efficiently in a library 

– mainly designed to be called from Fortran (see later ...) 

Often seen as the most important HPC library 
– eg LINPACK benchmark is standard HPC performance metric 

– solve a linear system with LU factorisation 

– possible to achieve performance close to theoretical peak 

Linear algebra is unusually efficient 
– LU decomposition has O(N3) operations for O(N2) memory 

loads 



BLAS 

Basic Linear Algebra Subprograms 
– Level 1: vector-vector operations (e.g. x·y) 

– Level 2: matrix-vector operations (e.g. Ax) 

– Level 3: matrix-matrix operations (e.g. AB) 

 (x, y vectors, A, B matrices) 

Example:        SAXPY routine 

single precision x + y      a 
(scalar) 

y is replaced “in-place” with a x + y 



LAPACK 

LAPACK is built on top of BLAS libraries 
– Most of the computation is done with the BLAS libraries 

Original goal of LAPACK was to improve upon 

previous libraries to run more efficiently on 

shared memory and multi-layered systems 
– Spend less time moving data around! 

LAPACK uses BLAS 3 instead of BLAS 1 

– matrix-matrix operations more efficient than vector-vector 

Always use libraries for Linear Algebra 

 



LU factorisation 

LU factorisation 
– call SGETRF(M, N, A, LDA, IPIV, INFO) 

– does an in-place LU factorisation of M by N matrix A 

• we will always consider the case M = N 

– A can actually be declared as REAL A(NMAX,MMAX) 

• routine operates on M x N submatrix 

• must tell the library the Leading Dimension of A, ie set 
LDA=NMAX 

– INTEGER IPIV(N) returns row permutation due to pivoting 

– error information returned in the integer INFO 

 



Solving: Forward/backward 

substituion 

Forward / backward substitution 
– call 

SGETRS(TRANS,N,NRHS,A,LDA,IPIV,B,LDB,INFO) 

– expects a factored A and IPIV from previous call to SGETRF 

– solves for multiple right-hand-sides, ie B is N x NRHS 

– we will only consider NRHS=1, ie RHS is the usual vector b 

– solution x is returned in b (ie original b is destroyed) 

Options exist for precise form of equations 
– specified by character variable TRANS 

– ‘N’ (Normal), ‘T’ (Transpose) 

 

 A x = b AT x = b 
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Summary 

Dense matrices arise from linear equations 
– standard notation is Ax = b 

Matrices characterised by their condition number 
– equations difficult to solve numerically have large condition number 

• an ill-conditioned matrix 

– may lead to large errors in our solution so always quantify the error 

Have covered direct solution methods for Ax = b 
– all are basically variants of Gaussian Elimination 

– rather than storing A-1, compute the LU factors of A 

– can then solve further equations Ax = c, Ax = d, ... at little extra cost 

– the larger the condition number, the harder the problem 

– pivoting is essential in practice for numerical stability 

Always use libraries for Linear Algebra 
 

 


