Matrices

Basic Linear Algebra

Overview

» Lecture will cover

— why matrices and linear algebra are so important
— basic terminology

— Gauss-Jordan elimination

— LU factorisation

— error estimation

— libraries

Basic Linear Algebra 2

e @ CC Linear algebra

» In mathematics linear algebra is the study of
linear transformations and vector spaces...

» ...in practice linear algebra is the study of
matrices and vectors

» Many physical problems can be formulated in
terms of matrices and vectors

Basic Linear Algebra 3

Health Warning

» Don't let the terminology scare you
— concepts quite straightforward, algorithms easily understandable
— Implementing the methods is often surprisingly easy

— but numerous variations (often for special cases or improved
numerical stability) lead to an explosion in terminology

ho/e
Sk LU .
y DeCO/‘n,OO faCtOrISatiOn
S/flo

05'\’{\0“

oM
¢ Nal© de®

Basic Linear Algebra 4

Basic matrices and vectors

ai1 ai12 a3 V1
A= a1 a22 G23 V= Vo
azp adgz2 Aaz3 V3

» A matrix multiplied by a vector gives another vector

a11V1 T Q1202 T A13VU3
Av = w = A21V1 T A22V2 T A230V3

a31v1; — a32V2 1 A33U3

Basic Linear Algebra 5

Linear Systems as Matrix Equations

» Many problems expressible as linear equations
— two apples and three pears cost 40 pence
— three apples and five pears cost 65 pence
— how much does one apple or one pear cost?

) £ hi 2a + 3p =40
xpressthisas . . _ .

: : 23| a 40

> Or in matrix form |3 5|/ ,| = ¢

— matrix X vector = vector

Basic Linear Algebra 6

Standard Notation

» For a system of N equations in N unknowns

airy +apr2 + ...+ aNry = b

a2171 + @220 +. .. + aanT N = b2
an1T1 +anor2 + ... tayyTy = by
— coefficients form a matrix A with elements a;
— unknowns form a vector x with elements Xx;

— solution forms a vector b with elements b,

» All linear equations have the form Ax =b

Basic Linear Algebra 7

Matrix Inverse

» Ax=Dbimplies AlTAx=x=A1lb
— simple formulae exist for N=2
—1

A-1_ e a2 _ 1 agy —ai?

| 421 422 ajlaz2 —ajzaz2; | —421 411
5—=31123||a| [10||a] | 5 =340 |5
-3 20[35(|p| |01|/p| |—=3 2]|65] |10

» Rarely need (or want) to store the explicit inverse
— usually only require the solution to a particular set of equations

» Algebraic inversion impractical for large N
— use numerical algorithms such as Gaussian Elimination

Basic Linear Algebra 8

Simultaneous Equations

"l

a

» Equations are: ;

2a+3p=40 (1)

3a+5p=65 (i1)
— computing 2 x (i) - 3 x (i) gives p =130 - 120 =10
— substitute in (i) givesa=1/2x (40-3x10) =5

» Imagine we actually had

2.00000 a + 3.00000 p =40.00000 (i)

4.00000 a + 6.00001 p = 80.00010 (i)

(if) - 2 x (i) gives (6.00001 - 6.00000) p = (80.00010 - 80.00000)

— cancellations on both sides may give inaccurate numerical results
— value of p comes from multiplying a huge number by a tiny one

» How can we tell this will happen in advance?

23
395

Basic Linear Algebra 9

Matrix Conditioning

» Characterise a matrix by its condition number

— gives a measure of the range of the floating point numbers that
will be required to solve the system of equations

» A well-conditioned matrix

— has a small condition number
— and is numerically easy to solve

» An ill-conditioned matrix

— has a large condition number
— and is numerically difficult to solve

> A singular matrix

— has an infinite condition nymber
— Is impossible to solve numerically (or analytically)

Basic Linear Algebra 10

Calculating the Condition Number

» Easy to compute condition no. for small problems

2a+3p=40
3a+5p=65

— has a condition number of 46 (ratio of largest/smallest eigenvalue)

2.00000 a + 3.00000 p = 40.00000
4.00000 a + 6.00001 p = 80.00010

— has condition number of 8 million!

» Very hard to compute for real problems
— methods exist for obtaining good estimates

Basic Linear Algebra 11

Relevance of Condition Number

» Gives a measure of the range of the scales of

numbers in the problem

— eg If condition number = 46, largest number required in
calculation will be roughly 46 times larger than smallest

— if condition number = 107, this may be a problem for single
precision where we can only resolve one part in 108

» May require higher precision to solve ill-

conditioned problems
— In addition to a robust algorithm

Basic Linear Algebra 12

Gauss-Jordan Elimination

» The technique you may have learned at school

— subtract rows of A from other rows to eliminate off-diagonals
— must perform same operations to RHS (i.e. b)

11 @12|G13 a14[> ajl a2 a3 a4
21\ 422|G23 24| a1 |0 ah; 055 054
limin ‘ ‘ a9 (1 azj aa.? alj 0 /
e ate adl adg add %4 ay adg Gdd 6'54
/
\a41/ @42|G43 aqq 0 aly aly aly |

sweep
» Pivoting
— using row p as the pivot row (p=1 above) implies division by a,,
— very important to do row exchange to maximise a,
— this is partial pivoting (full pivoting includes column exchange)

Basic Linear Algebra 13

e O CC Observations

» Gauss-Jordan is a simple direct method
— we know the operation count at the outset, complexity O(N3)

» Possible to reduce A to purely diagonal form
— solving a diagonal system is trivial

aiy 00 0 ||ay] b)) ajir; = b}
0 ab 0 0 [|zo| |bh . ahoxo = bh

/ = | 1/ /
D D {133 0 .‘L‘"S b3 {1333‘33 = bg
0O 0 0 "-IEL&L_ 7y bEL {1"443:4 = bﬂl

— Dbetter to reduce to upper triangular - Gaussian Elimination

Basic Linear Algebra 14

Gaussian Elimination

» Solve resulting system with back-substitution
— can compute x, first, then x5, then x,, etc...

)

1 alo dhg ajg|[zr] [B1] ahrg+ajon +015T5+014T4 = b
0 ahy adg ayy || x2 _ b aox 9+ﬂ95’1"5+094?4 = b
0 0 agzay | z3) |b5 az3r3 + agyry = b

Basic Linear Algebra 15

LU Factorisation

» Gaussian Elimination is a practical method

— must do partial pivoting and keep track of row permutations
— restriction: must start a new computation for every different b

» Upper-triangular system U x = b easy to solve
— likewise for lower-triangular L x = b using forward-substitution

» Imagine we could decompose A = LU
— Ax=(LU)x=L((Ux)=Db
— first solve Ly =b then Ux =y
— each triangular solve has complexity O(N2)

» But how do we compute the L and U factors?

Basic Linear Algebra 16

Computing L and U

» Clearly only have N2 unknowns

— assume L is unit lower triangular and U is upper triangular

aip ai12
a1 a2
a31 a32
aq1 G42

a3 a4
a3 a4
az3 a3y
a43 @44 |

— writing out in full

(o)

[o1119 +
[31u12 +

ly1ugo

e
o1 1

U2
122

l31 I3 1
IRZCRZER N

lzﬁggg-% (g

31113 + l30u93 +

lyjurg + lyguas +

- | -ull U2 13 ul@:-
U22 Uu23 U24
u33 U4
o Uygy

433

Basic Linear Algebra

17

Implementation

» Can pack LU factors into a single matrix

a1] a1p @13 aig| Ui U1 Uiz Ulg
a1 a2 23 24| lo1 w29 uo3 uy
asl a2 a3z asy I31 32 us3 u3y
ag) ago aq3 agq | (lag Uy Uy ugy |

» RHS computed in columns

— once |; or u; Is calculated, a; is not needed any more
— can therefore do LU decomposition in-place

— elements of A over-written by L and U

— complexity is O(N?3)

Basic Linear Algebra 18

Crout’s Algorithm

» Replaces A by its LU decomposition
— Implements pivoting, ie decomposes row permutation of A
— computation of |; requires division by u;
— can promote a sub-diagonal I as appropriate
— essential for stability with large N

> Loop over columns |
— compute u; fori=1,2 ...
— compute I; for i =j+1, j+2 .. N
— pivot as appropriate before proceeding to next column

> See, e.g., Numerical Recipes section 2.3

Basic Linear Algebra 19

Procedure

» To solve Ax =D
— decompose A into L and U factors via Crout’s algorithm
— replaces A in-place
— setx=Db
— do in-place solution of Lx = x (forward substitution)
— do in-place solution of Ux = x (backward substitution)

» Advantages
— pivoting makes the procedure stable
— only compute LU factors once for any number of vectors b
— subsequent solutions are O(N?) after initial O(N3) factorisation
— to compute inverse, solve for a set of N unit vectors b
— determinant of A can be computed from the product of u;

Basic Linear Algebra 20

Quantifying the Error

» We hope to have solved Ax = b

— there will inevitably be errors due to limited precision
— can guantify this by computing the residual vector r = b - Ax
— typically quote the root-mean-square residue

residue = I7]]2 . z|le = Valz =

N
> @I
1=1

k]

— length defined by L, norm (“two-norm”) - other norms exist

Basic Linear Algebra

21

Linear algebra libraries

» Linear Algebra is a well constrained problem

— can define a small set of common operations
— Implement them robustly and efficiently in a library
— mainly designed to be called from Fortran (see later ...)

» Often seen as the most important HPC library

— eg LINPACK benchmark is standard HPC performance metric
— solve a linear system with LU factorisation
— possible to achieve performance close to theoretical peak

» Linear algebra is unusually efficient

— LU decomposition has O(N?) operations for O(N?) memory
loads

» Basic Linear Algebra Subprograms

— Level 1: vector-vector operations (e.g. X-y)

— Level 2: matrix-vector operations (e.g. AX)

— Level 3. matrix-matrix operations (e.g. AB)
(X, y vectors, A, B matrices)

> Example: SAXPY routine

7 TANN

single precision x +Y
(scalar)

y is replaced “in-place” with ax +y

» LAPACK is built on top of BLAS libraries

— Most of the computation is done with the BLAS libraries
» Original goal of LAPACK was to improve upon
previous libraries to run more efficiently on

shared memory and multi-layered systems
— Spend less time moving data around!

» LAPACK uses BLAS 3 instead of BLAS 1

— matrix-matrix operations more efficient than vector-vector

» Always use libraries for Linear Algebra

LU factorisation

» LU factorisation
- call SGETRF(M, N, A, LDA, IPIV, INFO)
— does an in-place LU factorisation of M by N matrix A
« we will always consider the case M =N
— A can actually be declared as REAL A (NMAX, MMAX)

* routine operates on M x N submatrix

« must tell the library the Leading Dimension of A, ie set
LDA=NMAX

— INTEGER IPIV(N) returns row permutation due to pivoting
— error information returned in the integer INFO

Solving: Forward/backward

substituion

» Forward / backward substitution

— call
SGETRS (TRANS,N,NRHS ,A,LDA,IPIV,B,LDB, INFO)

— expects a factored A and IPIV from previous call to SGETRF
— solves for multiple right-hand-sides, ie B iS N X NRHS
— we will only consider NRHS=1, ie RHS is the usual vector b

— solution x is returned in b (ie original b is destroyed)

» Options exist for precise form of equations
— specified by character variable TRANS
— ‘N’ (Normal), ‘T’ (Transpose)

A

I}
I
O

D AT x=Db

Summary

» Dense matrices arise from linear equations
— standard notation is AXx = b

» Matrices characterised by their condition number

— equations difficult to solve numerically have large condition number
 an ill-conditioned matrix

— may lead to large errors in our solution so always quantify the error

» Have covered direct solution methods for Ax = b
— all are basically variants of Gaussian Elimination
— rather than storing A1, compute the LU factors of A
— can then solve further equations Ax = ¢, Ax = d, ... at little extra cost
— the larger the condition number, the harder the problem
— pivoting is essential in practice for numerical stability

» Always use libraries for Linear Algebra

Basic Linear Algebra 27

