

Parallel Numerical Algorithms

Discretised Partial Differential Equations

Overview of Lecture

- Pollution problem as a Partial Differential Equation
 - equations in one and two dimensions
 - boundary conditions
- Discretised equations
 - putting problem onto a lattice
 - PDE as a matrix problem
 - the five-point stencil
 - mapping between the 2D continuous and discrete problems
 - introducing a wind
- Notes
- Summary

1D Diffusion Equation

Imagine one-dimensional problem with no wind

- eg pollution in a valley
- Call the density of pollution u
 - distance along the valley is *x* which is in the range [0.0, 1.0]

- initial minus sign is a useful convention (see later)
- equation is for steady state solution that does not vary in time

- In one dimension, solution is a straight line
 - equation is: u(x) = m x + c
 - but what are the values of gradient m and intercept c?
- Actual solution depends on boundary conditions
 - differential equation gives the behaviour in the interior (0.0,1.0)
 - must also specify the behaviour at boundaries x=0.0 and x=1.0
 - for example, u(0.0) = 1.0 and u(1.0) = 5.0

Boundary Conditions

- We solved the equation: $-\frac{d^2}{dx^2}u(x)=0$
 - with u(0.0) = 1.0 and u(1.0) = 5.0, the answer is u(x) = 4.0 x + 1.0
- In general
 - "What is the pollution in a valley" is a meaningless question
 - must ask: "What is the pollution in a valley when the pollution levels are **one** at the western end and **five** at the eastern end"
- Same applies in our two-dimensional problem
 - equations will determine solution u(x,y) in the **interior** region
 - we must independently specify behaviour on all the **boundaries**
- For this reason, steady state problems like this are called *Boundary Value Problems*

The Problem we want to solve

Mathematical Problem in 2D

PDE with no wind is

$$-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u(x,y) = 0$$

- all solutions obey this Partial Differential Equation (PDE) in interior region
- Must also specify Boundary Conditions (BCs)
 - BCs must be appropriate to our specific problem
- In this case, a simple choice is:
 - set pollution on boundary to zero everywhere except at chimney
 - assume domain is large enough that no pollution gets to the edges
 - specify u(1.0, y) as a hump concentrated around (1.0, 0.5)
 - this is a guess at the way pollution is emitted by the chimney
 - a single sharp peak at (1.0,0.5) causes technical problems later!
- Solve the equations somehow ...
 - and the pollution level at the house is the value of u(0.20, 0.33)

Discretising the Problem

- Replace continuous real x by discrete integer i
 - divide domain into a lattice containing M+1 sections each of width h
 - eg in above diagram, M=8 and h = 1.0/(M+1) = 0.11
- Solve for *N* different variables u_i , i = 1, 2, ..., N
 - in one dimension, N = M but not true in general (in 2D problem $N=M^2$)
 - boundary values are u_0 and u_{N+1} (above, u_0 and u_9)
- But what equations do the *u_i* variables satisfy?
 - and how do we decide on the boundary values?

Discretising the Equations

Approximate gradients with lines,

- eg a forward difference:
- or a central difference:

- $$\begin{split} &\frac{d}{dx}\,u(x)\approx\frac{u_{i+1}-u_i}{h}\\ &\frac{d}{dx}\,u(x)\approx\frac{u_{i+1}-u_{i-1}}{2h} \end{split}$$
- All become more accurate as we reduce h
 - but for a given value of *h*, some will be more accurate than others
 - eg forward difference has errors proportional to h
 - central has errors proportional to h^2 and is therefore **more accurate**
 - can estimate errors by doing a Taylor expansion about u(x) ...

Discretised Equations

Write second derivative as:

$$\frac{d^2}{dx^2} u(x) = \frac{d}{dx} \left(\frac{d}{dx} u(x) \right)$$

- use forward difference for first derivative, then a backward for second

$$\frac{d^2}{dx^2} u(x) \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$

 \sim

Boundary conditions are straightforward

$$- u(0.0) = 1.0: u_0 = 1.0$$

 $- u(1.0) = 5.0: u_{M+1} = 5.0$

This gives us N equations in N unknowns

$$-u_{i+1}+2u_i-u_{i+1}=0, i=1, 2, ... N$$

Converted differential equations into difference equations

- larger *M* means a smaller *h* and more accurate equations
- but also a larger N and much more work, especially in 2D or 3D problems!

Writing the eight equations out in full

$$2u_1 - u_2 = 1$$

$$-u_1 + 2u_2 - u_3 = 0$$

$$-u_2 + 2u_3 - u_4 = 0$$

$$-u_3 + 2u_4 - u_5 = 0$$

$$-u_4 + 2u_5 - u_6 = 0$$

$$-u_5 + 2u_6 - u_7 = 0$$

$$-u_6 + 2u_7 - u_8 = 0$$

$$-u_7 + 2u_8 = 5$$

Notes

- have multiplied all the equations by h^2 for simplicity
- first and last equations are different as we know u_0 and u_9
- we write the known values on the right-hand-side for convenience

EXAMPLE OF CONTRACT OF CONTRACT.

- Simple interpretation
 - every point equals the average of its nearest neighbours
 - what has this got to do with diffusion?
- Imagine pollution particles do "a random walk"
 - each step, particles at every lattice point move randomly left or right
 - let u_i be the number of particles at lattice point *i*

Steady State Random Walk

- At each step
 - population u_i is replaced by $u_{i-1}/2$ (from left) and $u_{i+1}/2$ (right)
 - for a steady state, $u_i = (u_{i-1} + u_{i+1})/2$
 - same equations as before: $-u_{i+1} + 2u_i u_{i+1} = 0$, i = 1, 2, ..., N
- Perhaps easier to understand than: $-\frac{d^2}{dx^2}u(x) = 0$

- Note that this is a dynamic equilibrium
 - just because pollution level u(x) is constant doesn't mean that the pollution particles are static
 - eg density of air is constant even though molecules are moving!

These can be written in standard form Au = b

- in this case, A is sparse and symmetric

Two Dimensional Problem

- Simple extension to two dimensions
 - impose a square lattice of size *M*+1 by *M*+1, spacing *h*
 - replace real continuous coordinates (x,y) by integers i,,j
 - solution is now $u_{i,j}$ with i = 1, 2, ..., M and j = 1, 2, ..., M
 - the number of unknowns N is now M^2

$$- \text{ in 1D} \qquad \qquad \frac{d^2}{dx^2} u(x) \approx \frac{u_{i-1} - 2u_i + u_{i+1}}{h^2}$$

$$- \text{ in 2D:} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x, y) \approx \frac{u_{i,j-1} + u_{i-1,j} - 4u_{i,j} + u_{i+1,j} + u_{i,j+1}}{h^2}$$

- every point is averaged with its four nearest neighbours

Five Point Stencil

The equation can be represented graphically

- (remember the initial minus sign!)
- again, can easily be interpreted as a random walk

More Accurate Stencils

- More accuracy means more complicated shape
 - eg a nine-point stencil for the same equation includes u_{i+1}, \dots
 - can be understood as a random walk, now also including diagonals

Notation

- The vector b is often called the source
 - remember that it contains all the fixed boundary values of u
 - for 2D problem, corresponds to hump function around chimney
 - the hump is clearly the source of the pollution
- The 2D diffusion operator is very common
 - has a special name, "Grad Squared", and symbol: ∇^2
- Can write the 2D equations as: $-\nabla^2 u(x,y) = 0$
 - the five-point stencil is a standard discretisation of ∇^2
 - different discretisations (or different equations) will lead to a different form for the matrix A
- Another notation indicates derivatives by '

$$\frac{d}{dx}u(x) \to u'(x), \quad \frac{d^2}{dx^2}u(x) \to u''(x)$$

Grid Coordinates vs Real Space

- We store values on a discrete grid
 - $u_0, u_1, u_2, \dots, u_{N-1}, u_{N+1}$

epcc

- What points do these represent in real space?
 - in 1D: $x = i^*h$ $u_i \rightarrow u(i^*h)$
 - in 2D: $x = i^*h$, $y = j^*h$ $u_{i,j} \rightarrow u(i^*h, j^*h)$
- Converting from real space to grid points?
 - much harder as coordinate x will not sit exactly on the grid
 - to get the value of u(x) from the grid, must do some sort of interpolation of u_i from the nearby grid points
 - simplest solution is a weighted average see exercise notes

Introducing a Wind

More pollution moves in same direction as wind

- in 1D, the equations for a wind of strength a (from the right) are

$$-\frac{d^2}{dx^2}u(x) - a\frac{d}{dx}u(x) = 0$$

$$\frac{-u_{i-1} + 2u_i - u_{i+1}}{h^2} - a\left(\frac{u_{i+1} - u_i}{h}\right) = 0$$

$$-\left(\frac{1}{h^2}\right)u_{i-1} + \left(\frac{2}{h^2} + \frac{a}{h}\right)u_i - \left(\frac{1}{h^2} + \frac{a}{h}\right)u_{i+1} = 0$$

- more particles move left (from u_{i+1} to u_i) than right

- makes the associated matrix A non-symmetric
- straightforward to extend to two dimensions

> 2D equations for a NE wind of strength (a_x, a_y)

$$-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u(x,y) - a_x\frac{\partial}{\partial x}u(x,y) - a_y\frac{\partial}{\partial y}u(x,y) = 0$$

Use forward differences for first derivatives, eg:

$$\frac{\partial}{\partial x} u(x,y) \approx \frac{u_{i+1,j} - u_{i,j}}{h}$$

- now straightforward to write out difference equations in full
- on the computer we deal with the values a_x^*h and a_y^*h

- What about different boundary conditions?
 - fixed boundary conditions are called Dirichlet conditions
 - might want to specify the gradient at a boundary
 - eg "the slope of the pollution curve should be zero at the edges"
 - these are called Neumann boundary conditions
- Dirichlet conditions affect the right-hand-side b
 - Neumann conditions alter the matrix A near domain boundaries
- Non-Linear Equations
 - can easily be discretised using standard recipes
 - this will lead to equations like: $u_1^2 + 2 u_2 + u_3 = 0$
 - this CANNOT be expressed as a matrix equation with constant A
 - ie not possible to solve using methods like Gaussian Elimination

- Many physical problems are expressed as PDEs
 - impose a regular lattice on the problem
 - discretise the differential equations using standard techniques
- This leads to set of N difference equations
 - converts PDE to a set of linear equations Au=b which we can solve
 - A depends on the PDE, b on boundary conditions, solution is u
 - N may be very large indeed for 2D or 3D problems!
- We are solving an approximation to the PDE
 - even if we solve linear equations accurately, there is still an error
 - can reduce this error using a more accurate discretisation of PDE
 - or a larger *M* (ie smaller value of *h*) with the same discretisation
 - both these approaches require additional work