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Parallel Numerical Algorithms 

Discretised Partial Differential Equations 
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Overview of Lecture 

Pollution problem as a Partial Differential Equation 
– equations in one and two dimensions 

– boundary conditions 

Discretised equations 
– putting problem onto a lattice 

– PDE as a matrix problem 

– the five-point stencil 

– mapping between the 2D continuous and discrete problems  

– introducing a wind 

Notes 

Summary 

 



3 

1D Diffusion Equation 

Imagine one-dimensional problem with no wind 
– eg pollution in a valley 

Call the density of pollution u 
– distance along the valley is x which is in the range [0.0, 1.0] 

• in general the domain size is L, but for simplicity we take L = 1.0 

 

 

 

 

Differential equation is:  
 

– initial minus sign is a useful convention (see later) 

– equation is for steady state solution that does not vary in time 

x 
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Analytic Solution 

In one dimension, solution is a straight line 
– equation is: u(x) = m x + c 

– but what are the values of gradient m and intercept c? 

Actual solution depends on boundary conditions 
– differential equation gives the behaviour in the interior (0.0,1.0) 

– must also specify the behaviour at boundaries x=0.0 and x=1.0 

– for example, u(0.0) = 1.0 and u(1.0) = 5.0 
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Boundary Conditions 

We solved the equation: 
 

– with u(0.0) = 1.0 and u(1.0) = 5.0, the answer is u(x) = 4.0 x + 
1.0 

In general 
– “What is the pollution in a valley” is a meaningless question 

– must ask: “What is the pollution in a valley when the pollution 
levels are one at the western end and five at the eastern end” 

Same applies in our two-dimensional problem 
– equations will determine solution u(x,y) in the interior region 

– we must independently specify behaviour on all the boundaries 

For this reason, steady state problems like this 
are called Boundary Value Problems 
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The Problem we want to solve 

Chimney releases smoke 
– how much arrives at house with prevailing north-easterly wind? 
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Use 2D Domain (x,y) of Size 1x1  

(0.0,0.0) 

(1.0,0.0) 

(1.0,1,0) 

u(x,y) 

u(1.0,y) 
solution determined 

by PDE equations 

solution determined 

by boundary 

conditions 

(0.0,1.0) 

x 
y 

(0.20,0.33) 
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Mathematical Problem in 2D 

 

PDE with no wind is 
 

– all solutions obey this Partial Differential Equation (PDE) in interior region 

Must also specify Boundary Conditions (BCs) 
– BCs must be appropriate to our specific problem 

 In this case, a simple choice is: 
– set pollution on boundary to zero everywhere except at chimney 

• assume domain is large enough that no pollution gets to the edges 

– specify u(1.0,y) as a hump concentrated around (1.0, 0.5) 

• this is a guess at the way pollution is emitted by the chimney 

• a single sharp peak at (1.0,0.5) causes technical problems later! 

Solve the equations somehow ... 
– and the pollution level at the house is the value of u(0.20,0.33) 
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Discretising the Problem 

Replace continuous real x by discrete integer i 
– divide domain into a lattice containing M+1 sections each of width h 

– eg in above diagram, M=8 and h = 1.0/(M+1) = 0.11 

Solve for N different variables ui, i = 1, 2, ... N 
– in one dimension, N = M but not true in general (in 2D problem N=M2) 

– boundary values are u0 and uN+1 (above, u0 and u9) 

But what equations do the ui variables satisfy? 
– and how do we decide on the boundary values? 
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Discretising the Equations 

Approximate gradients with lines,  
– eg a forward difference: 

 

– or a central difference: 

All become more accurate as we reduce h 
– but for a given value of h, some will be more accurate than others 

– eg forward difference has errors proportional to h 

• central has errors proportional to h2 and is therefore more accurate 

– can estimate errors by doing a Taylor expansion about u(x) ... 

i i+1 i-1 

ui-1 

ui+1 

ui 
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Discretised Equations 

Write second derivative as: 
 

– use forward difference for first derivative, then a backward for second 

 

 

 

Boundary conditions are straightforward 
– u(0.0) = 1.0:  u0    = 1.0 

– u(1.0) = 5.0:  uM+1 = 5.0 

This gives us N equations in N unknowns 
     - ui-1+ 2 ui - ui+1 = 0,   i = 1, 2, ... N 

Converted differential equations into difference equations 
– larger M means a smaller h and more accurate equations 

– but also a larger N and much more work, especially in 2D or 3D problems! 
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Difference Equations for N = 8 

Writing the eight equations out in full 
 

 

 

 

 

 

 

 

 

– Notes 

• have multiplied all the equations by h2 for simplicity 

• first and last equations are different as we know u0 and u9 

• we write the known values on the right-hand-side for convenience 
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Interpreting Difference Equations 

Simple interpretation 
– every point equals the average of its nearest neighbours 

– what has this got to do with diffusion? 

 

Imagine pollution particles do “a random walk” 
– each step, particles at every lattice point move randomly left or right 

– let ui be the number of particles at lattice point i 

 

 

 

i-1 i+1 i 

ui /2 ui /2 
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Steady State Random Walk 

At each step 
– population ui is replaced by ui-1 /2 (from left) and ui+1 /2 (right) 

– for a steady state, ui = (ui-1 + ui+1) /2 

– same equations as before:  - ui-1+ 2 ui - ui+1 = 0,   i = 1, 2, ... N 

 

Perhaps easier to understand than: 

 

Note that this is a dynamic equilibrium 
– just because pollution level u(x) is constant doesn’t mean that 

the pollution particles are static 

– eg density of air is constant even though molecules are moving! 
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Equations in Matrix Form 

These can be written in standard form Au = b 

 

 

 

 

 

 

 
 

 

– in this case, A is sparse and symmetric 
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Two Dimensional Problem 

Simple extension to two dimensions 
– impose a square lattice of size M+1 by M+1, spacing h 

– replace real continuous coordinates (x,y) by integers i,,j 

– solution is now ui,j  with i = 1, 2, ... M and j = 1, 2, ... M 

– the number of unknowns N is now M2 

 

 

– in 1D 

 

 

– in 2D: 

 

 

– every point is averaged with its four nearest neighbours 
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Five Point Stencil 

The equation can be represented graphically 
– (remember the initial minus sign!) 

– again, can easily be interpreted as a random walk 
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More Accurate Stencils 

More accuracy means more complicated shape 
– eg a nine-point stencil for the same equation includes ui+1,j+1, ... 

– can be understood as a random walk, now also including 

diagonals 
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Notation 

The vector b is often called the source 
– remember that it contains all the fixed boundary values of u 

– for 2D problem, corresponds to hump function around chimney 

• the hump is clearly the source of the pollution 

The 2D diffusion operator is very common 
– has a special name, “Grad Squared”, and symbol: 2 

Can write the 2D equations as: -2 u(x,y) = 0 
– the five-point stencil is a standard discretisation of 2 

– different discretisations (or different equations) will lead to a different 

form for the matrix A 

Another notation indicates derivatives by ’ 
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Grid Coordinates vs Real Space 

We store values on a discrete grid 
– u0, u1, u2, ... , uN-1, uN+1 

 

What points do these represent in real space? 
– in 1D: x = i*h  ui  → u(i*h) 

– in 2D: x = i*h, y = j*h  ui,j → u(i*h, j*h) 

 

Converting from real space to grid points? 
– much harder as coordinate x will not sit exactly on the grid 

– to get the value of u(x) from the grid, must do some sort of 

interpolation of ui from the nearby grid points 

– simplest solution is a weighted average – see exercise notes 
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Introducing a Wind 

More pollution moves in same direction as wind 
– in 1D, the equations for a wind of strength a (from the right) are 

 

 

 

 

 

 

 

 

 

– more particles move left (from ui+1 to ui) than right 

• makes the associated matrix A non-symmetric 

• straightforward to extend to two dimensions 



22 

In Two Dimensions 

2D equations for a NE wind of strength (ax, ay) 

 

 

 

Use forward differences for first derivatives, eg: 

 

 

 
 

– now straightforward to write out difference equations in full 

– on the computer we deal with the values ax*h and ay*h  
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Notes 

What about different boundary conditions? 
– fixed boundary conditions are called Dirichlet conditions 

– might want to specify the gradient at a boundary 

• eg “the slope of the pollution curve should be zero at the edges” 

• these are called Neumann boundary conditions 

Dirichlet conditions affect the right-hand-side b 
– Neumann conditions alter the matrix A near domain boundaries 

Non-Linear Equations 
– can easily be discretised using standard recipes 

– this will lead to equations like: u1
2 + 2 u2 + u3 = 0 

– this CANNOT be expressed as a matrix equation with constant A 

• ie not possible to solve using methods like Gaussian Elimination 
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Summary 

Many physical problems are expressed as PDEs 
– impose a regular lattice on the problem 

– discretise the differential equations using standard techniques 

This leads to set of N difference equations 
– converts PDE to a set of linear equations Au=b which we can solve 

– A depends on the PDE, b on boundary conditions, solution is u 

– N may be very large indeed for 2D or 3D problems! 

We are solving an approximation to the PDE 
– even if we solve linear equations accurately, there is still an error 

– can reduce this error using a more accurate discretisation of PDE 

• or a larger M (ie smaller value of h) with the same discretisation 

– both these approaches require additional work 


