
1

Parallel Numerical Algorithms

Solution of Boundary Value Problems

2

Overview of Lecture

General solution methods

Relaxation methods
– Jacobi algorithm

– testing for convergence

– Gauss Seidel

– over-relaxation

Notes
– parallelisation

– non-linear equations

Pollution problem
– solution using relaxation methods

– 2D equations including wind

3

Many methods for solving Au=b

Direct methods
– give the solution after a fixed number of operations

• Gaussian elimination

• LU factorisation

Relaxation methods (this lecture)
– gradually improve solution, starting from an initial guess

– stop when the answer is sufficiently accurate

– simple to implement but may be slow to converge on solution

• or may fail completely!

Krylov subspace methods (following lectures)
– iterative (like relaxation methods) but more sophisticated

– harder to implement but more efficient and reliable

4

Why not use Direct Methods?

Direct methods explicitly operate on the matrix A
– eg decompose it into L and U factors

For PDEs, A is very sparse indeed
– may contain 99% zeros so clearly we use compressed storage

– we want to take advantage of this when we solve equations

Difficult to exploit sparsity for direct methods
– eg L and U may be dense even though A is sparse

– for large systems of equations, we may run out of memory!

Relaxation and Krylov methods exploit sparsity
– relaxation methods operate on the equations not the matrix

– Krylov methods comprise mostly matrix-vector multiplications

• can write efficient routines to do y = A x when A is sparse

5

Relaxation vs Matrix Methods

Operate directly on the difference equations
– can forget (almost!) all about the matrix representation Au = b

for this lecture

– it turns out that relaxation methods can usefully be understood

in terms of matrix-vector operations (not immediately obvious)

• See lecture on “Matrix Splitting Techniques”

For illustrative purposes, look at 1D problem
– for simplicity with no wind

– exercise will involve extending this to the 2D problem

• quite straightforward in practice

6

Relaxation Methods

1D diffusion equations are
 - ui-1+ 2 ui - ui+1 = 0, i = 1, 2, ... N

Equivalently: ui = ½ (ui-1 + ui+1)
– why not make an initial guess at the solution

– then loop over each lattice point i and set ui = ½ (ui-1 + ui+1)

– ie we solve the equation exactly at each point in turn

Updating ui spoils solution we just did for ui-1

– so simply iterate the whole process again and again ...

– ... and hope we eventually get the right answer!

This is called the Jacobi Algorithm
– the simplest possible relaxation method

7

Jacobi Algorithm

Use superscript n to indicate iteration number
– n counts the number of times we update the whole solution

– equivalent to computer time

Jacobi algorithm for diffusion equation is:

Each iteration, calculate u(n+1) in terms of u(n)

– don’t need to keep copies of all the previous solutions

– only need to remember two solutions at any time: u and unew

• corresponding to iterations n and n+1

ui
(n+1) = ½ (ui-1

(n) + ui+1
(n))

8

Jacobi Pseudo-Code

declare arrays: u(0, 1, ..., M+1)

 unew(0, 1, ..., M+1)

initialise: set boundaries: u(0) = fixed value u0

 u(M+1) = fixed value uM+1

 initial guess: u(1, 2, ..., M) = guess value

loop over n = 1, 2, ...

 update: loop over internal points: i = 1, 2, ... M

 unew(i) = 0.5*(u(i-1) + u(i+1))

 end loop over i

 copy back: u(1, 2, ..., M) = unew(1, 2, ..., M)

end loop over n

9

Implementation Notes

Array declarations
– Fortran: real, dimension(0:M+1) :: u

– Java: float[] u = new float[M+2];

– C: float u[M+2];

Arrays explicitly contain boundaries u0 and uM+1
– we set them according to boundary conditions

• but we NEVER update them!

– eg when we copy unew back to u, only copy internal values

– in pseudo-code, boundary values for unew are never set

• complete solution is therefore only ever present in u

• might be more elegant to set boundaries in unew as well

What to choose for initial guess ui
(0) ?

– for a simple implementation just set interior values to zero

10

Progress of Solution

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

n = 0

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

 n= 1

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

n = 5

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

n = 20

11

When to Stop the Iterative Loop

The solution appears to be getting better
– must quantify this!

For dense systems we used the residual
– we tried to solve Ax=b, so r = b-Ax should be a zero vector

– in practice, there is a numerical error in solution of each equation

– error in equation i is the value of ri

• residual is computed from the sum of the squares of ri

Can do the same thing for relaxation methods
– compute the sum of the squares of the error in each equation

– do this at the end of each iterative loop over n

• stop if this is small enough

12

Pseudocode for Residual Calculation

loop over n = 1, 2, ...

 update: ...

 copy back: ...

 compute residue: rnorm = 0.0

 loop over i = 1, 2, ..., M

 rnorm = rnorm + (-u(i-1)+2*u(i)-u(i+1))2

 end loop over n

 rnorm = sqrt(rnorm)

 normalise: res = rnorm / bnorm

 if (res < tolerance) finish

end loop over n

13

Notes on Residual

For a perfect solution, residue will be zero
– in practice we will get a finite value

– usually stop when it is “small”, eg a tolerance of res < 10-6

– there will be a limit to how small the residual can get

• can easily hit the limits of single precision

• use double precision everywhere (or at least perform residual

calculation using doubles)

Normalisation
– need to divide by the norm of the b vector

– we saw before that b corresponds to the boundary values

– in 1D: bnorm = sqrt(u(0)*u(0) + u(M+1)*u(M+1))

• in 2D, need to sum values of squares of ui,j over all edges

14

Residual Against Iteration

Decreases exponentially
– with a zero initial guess for u, should equal 1.0 at iteration zero

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 20 40 60 80 100

Parallelisation

Very simple for Jacobi

Decompose the problem domain regularly

across processes/threads
– for MPI we need halo regions due to i+1, i-1 references

– halos are 1 cell wide for 5-point stencil

– could be wider for larger stencils

– swap halos between neighbouring processes every iteration

Require global sums for, eg, residue calculation

15

16

Relaxation Methods

About to cover some variations on Jacobi
– which we hope will be faster!

How can we tell if a method will work at all?

Necessary (but not sufficient) condition
– if the method arrives at the correct solution it must stay there

Is this true for Jacobi?

– for a solution: -ui-1
(n)+2 ui

(n)-ui+1
(n) = 0, ie ½ (ui-1

(n)
 + ui+1

(n)) = ui
(n)

– so, ui
(n+1) = ui

(n) and we stay at the solution

• worth checking this for other methods

ui
(n+1) = ½ (ui-1

(n) + ui+1
(n))

17

Gauss Seidel

Why do we need both unew and u ?

 update: loop over internal points: i = 1, 2, ... M

 unew(i) = 0.5*(u(i-1) + u(i+1))

 end loop over i

 copy back: u(1, 2, ..., M) = unew(1, 2, ..., M)

Why not do the update in place?

 update: loop over internal points: i = 1, 2, ... M

 u(i) = 0.5*(u(i-1) + u(i+1))

 end loop over i

– this is called the Gauss-Seidel method

18

Convergence of Gauss-Seidel

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 20 40 60 80 100

Converges twice as fast as Jacobi
– for less work and less storage!

19

Notes on Gauss Seidel

Order of the update loop is now significant
– we used normal (lexicographic) order: other orderings possible

Red-black order divides grid into chequerboard
– update all the red squares first then all the black ones

– enables Gauss Seidel method to be parallelised

Processor 1

Processor 2

20

Over Relaxation

Recall how Jacobi solution progressed

– we have increased the value of ui by a small amount

• but we know the real solution is even higher

– why not increase by more than suggested

• ie multiply the change by some factor w > 1

ui-1
(n)

ui+1
(n)

ui
(n)

ui
(n+1)

21

Over-Relaxed Gauss Seidel

Gauss-Seidel method: ui = ½ (ui-1+ ui+1)

– ie: ui = ui + [½ (ui-1 – 2 ui + ui+1)]

Multiply change (in square brackets) by w

– over-relaxed update: ui = ui + ½ w (ui-1 – 2 ui + ui+1)

– or ui = (1-w) ui + ½ w (ui-1 + ui+1)

Notes
– original method corresponds to w = 1

– if we get to a solution we stay there for any value of w

22

Non-Linear Equations

Relaxation methods deal directly with equations
– doesn’t matter that we cannot express them as Au = b

– equally valid for non-linear equations (eg fluid dynamics)

Non-linear equations can be very unstable
– may need to under-relax to get convergence, ie w < 1

23

Extending to 2 Dimensions

Initialise
– set boundary values (grey)

• zero on top, bottom and left

• hump function on right

– zero interior (white)

Loop over interior
• i = 1, 2, ..., M

• j = 1, 2, ..., M

– update ui,j as appropriate

Repeat until converged

Write results
– include boundaries so that the

solution looks nice!

j

i

0 1 2 4 3 6 5 7 8 9

0

1

2

3

4

5

6

7

8
9

2D example with M = 8

24

Notes (1)

How do we convert from (i,j) to (x,y) coordinates?
– for a domain of size 1x1:

• x = i * h and y = j * h

What is the hump function?
– u(1.0,y) = k * (y2 –y)2 * (y – y1)

2

– a peak, centred at (y2+y1)/2, dropping to zero for y < y1 and y > y2

– for this example, take y1= 0.4 and y2= 0.6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 0.2 0.4 0.6 0.8 1

25

Notes (2)

How do we convert from (x,y) to (i,j) coordinates?

– eg what lattice point do we look at to find u(0.20,0.33)?

– (0.20,0.33) is unlikely to fall exactly on a lattice point

– the four nearest neighbours are:

• i = int(x/h)

• j = int(y/h)

– do weighted average of these four values (see exercise notes)

(x,y)

(i,j)

(i+1,j+1) (i,j+1)

(i+1,j)

26

Convection-Diffusion Equations

1D Gauss-Seidel update

1D Over-Relaxed update

2D Discrete Equations

 (ax, ay) = wind strength from x (East) and y (North) respectively

27

Notes

Have multiplied all the equations by h2

– equations now explicitly depend on h for a non-zero wind a

– straightforward to derive update equations for 2D case

A different convention for Krylov methods
– maintain the 1/h2 factor in matrix A

• therefore need to multiply RHS by same factor

• happens to be more convenient

Finite wind
– matrix A is now non-symmetric

– in 1D, lower-diagonal elements are (1+ah), upper elements are 1

– gives some minor technical issues when normalising the residue

• see notes

• if correctly normalised, residue at zero iterations will always be 1.0 if
the initial guess is a zero solution

28

Sample solution: N=8 and a=2.0

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

29

Summary

Relaxation methods
– guess at an initial solution

– update many times and stop when residue is small enough

Update rule is very straightforward
– solve exactly for each individual ui

• obtain formula by rearranging difference equations so ui is on the LHS

Interior points updated according to the PDE
– boundary points set by the boundary conditions

Jacobi is the simplest method
– Gauss Seidel acts “in-place” and requires roughly half the iterations

– appropriate over-relaxation can accelerate this even more

• finding the best value of w requires some experimentation!

