

Parallel Numerical Algorithms

Solution of Boundary Value Problems

Overview of Lecture

- General solution methods
- Relaxation methods
 - Jacobi algorithm
 - testing for convergence
 - Gauss Seidel
 - over-relaxation
- Notes
 - parallelisation
 - non-linear equations
- Pollution problem
 - solution using relaxation methods
 - 2D equations including wind

Many methods for solving Au=b

Direct methods

- give the solution after a fixed number of operations
 - Gaussian elimination
 - LU factorisation
- Relaxation methods (this lecture)
 - gradually improve solution, starting from an initial guess
 - stop when the answer is sufficiently accurate
 - simple to implement but may be slow to converge on solution
 - or may fail completely!
- Krylov subspace methods (following lectures)
 - iterative (like relaxation methods) but more sophisticated
 - harder to implement but more efficient and reliable

Direct methods explicitly operate on the matrix A

- eg decompose it into L and U factors
- For PDEs, A is very sparse indeed
 - may contain 99% zeros so clearly we use compressed storage
 - we want to take advantage of this when we solve equations
- Difficult to exploit sparsity for direct methods
 - eg L and U may be dense even though A is sparse
 - for large systems of equations, we may run out of memory!

Relaxation and Krylov methods exploit sparsity

- relaxation methods operate on the equations not the matrix
- Krylov methods comprise mostly matrix-vector multiplications
 - can write efficient routines to do y = A x when A is sparse

Relaxation vs Matrix Methods

Operate directly on the difference equations

- can forget (almost!) all about the matrix representation Au = b for this lecture
- it turns out that relaxation methods can usefully be understood in terms of matrix-vector operations (not immediately obvious)
 - See lecture on "Matrix Splitting Techniques"
- For illustrative purposes, look at 1D problem
 - for simplicity with no wind
 - exercise will involve extending this to the 2D problem
 - quite straightforward in practice

|epcc|

1D diffusion equations are

 $- u_{i-1} + 2 u_i - u_{i+1} = 0, \quad i = 1, 2, \dots N$

- Equivalently: $u_i = \frac{1}{2} (u_{i-1} + u_{i+1})$
 - why not make an initial guess at the solution
 - then loop over each lattice point *i* and set $u_i = \frac{1}{2} (u_{i-1} + u_{i+1})$
 - ie we solve the equation exactly at each point in turn
- Updating u_i spoils solution we just did for u_{i-1}
 - so simply iterate the whole process again and again ...
 - ... and hope we eventually get the right answer!
- This is called the Jacobi Algorithm
 - the simplest possible relaxation method

Use superscript n to indicate iteration number

- n counts the number of times we update the whole solution
- equivalent to computer time

Jacobi algorithm for diffusion equation is:

 $U_i^{(n+1)} = \frac{1}{2} \left(U_{i-1}^{(n)} + U_{i+1}^{(n)} \right)$

- Each iteration, calculate $u^{(n+1)}$ in terms of $u^{(n)}$
 - don't need to keep copies of all the previous solutions
 - only need to remember two solutions at any time: u and u_{new}
 - corresponding to iterations n and n+1

Jacobi Pseudo-Code

declare arrays: u(0, 1, ..., M+1) unew(0, 1, ..., M+1)

initialise: set boundaries: $u(0) = fixed value u_0$ $u(M+1) = fixed value u_{M+1}$ initial guess: u(1, 2, ..., M) = guess value

loop over $n = 1, 2, \ldots$

update: loop over internal points: i = 1, 2, ... M unew(i) = 0.5*(u(i-1) + u(i+1)) end loop over i

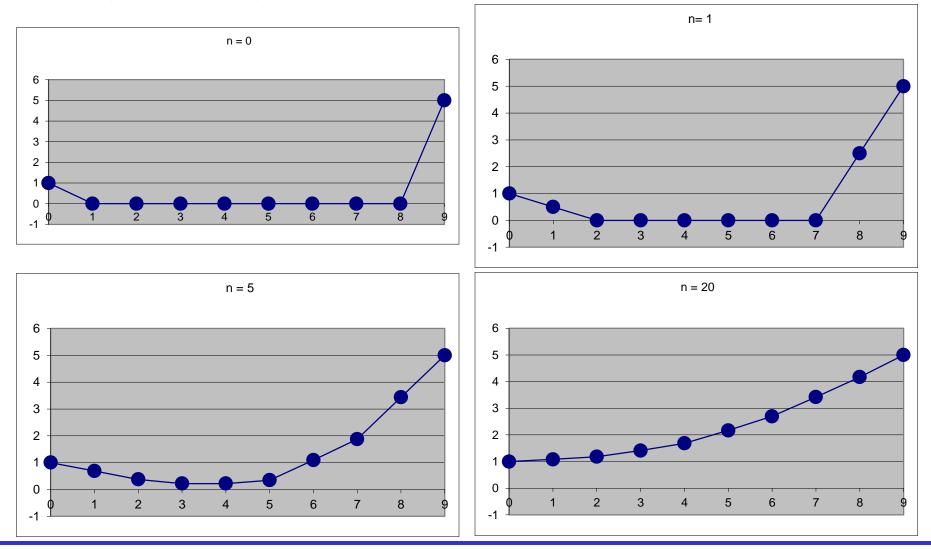
copy back: u(1, 2, ..., M) = unew(1, 2, ..., M)

end loop over n

Implementation Notes

- Array declarations
 - Fortran: real, dimension(0:M+1) :: u
 - Java: float[] u = new float[M+2];
 - C: float u[M+2];
- Arrays explicitly contain boundaries u_0 and u_{M+1}
 - we set them according to boundary conditions
 - but we NEVER update them!
 - eg when we copy u_{new} back to u, only copy internal values
 - in pseudo-code, boundary values for u_{new} are never set
 - complete solution is therefore only ever present in u
 - might be more elegant to set boundaries in u_{new} as well
- What to choose for initial guess $u_i^{(0)}$?
 - for a simple implementation just set interior values to zero

Progress of Solution



- The solution appears to be getting better
 - must quantify this!
- For dense systems we used the residual
 - we tried to solve Ax=b, so r = b-Ax should be a zero vector
 - in practice, there is a numerical error in solution of each equation
 - error in equation *i* is the value of r_i
 - residual is computed from the sum of the squares of r_i
- Can do the same thing for relaxation methods
 - compute the sum of the squares of the error in each equation
 - do this at the end of each iterative loop over n
 - stop if this is small enough

EDCC Pseudocode for Residual Calculation

```
loop over n = 1, 2, ...
update: ...
copy back: ...
 compute residue: rnorm = 0.0
                  loop over i = 1, 2, ..., M
                    rnorm = rnorm + (-u(i-1)+2*u(i)-u(i+1))^{2}
                  end loop over n
                  rnorm = sqrt(rnorm)
 normalise: res = rnorm / bnorm
  if (res < tolerance) finish
```

```
end loop over n
```

Notes on Residual

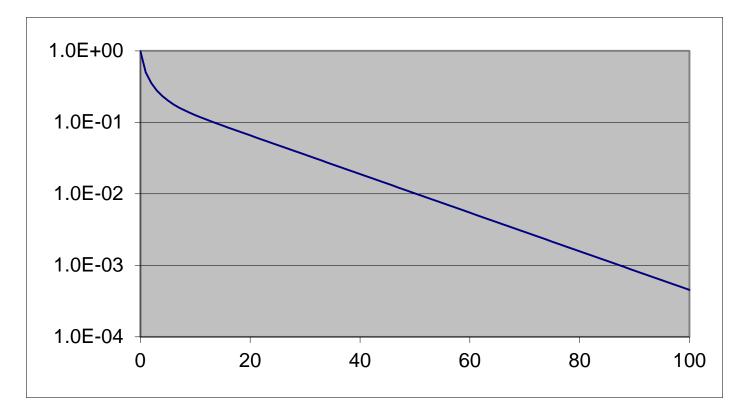
For a perfect solution, residue will be zero

- in practice we will get a finite value
- usually stop when it is "small", eg a tolerance of res < 10^{-6}
- there will be a limit to how small the residual can get
 - can easily hit the limits of single precision
 - use double precision everywhere (or at least perform residual calculation using doubles)

Normalisation

- need to divide by the norm of the b vector
- we saw before that b corresponds to the boundary values
- in 1D: bnorm = sqrt(u(0) * u(0) + u(M+1) * u(M+1))
 - in 2D, need to sum values of squares of $u_{i,j}$ over all edges

Residual Against Iteration



Decreases exponentially

- with a zero initial guess for *u*, should equal 1.0 at iteration zero

Parallelisation

epcc

- Very simple for Jacobi
- Decompose the problem domain regularly across processes/threads
 - for MPI we need halo regions due to *i*+1, *i*-1 references
 - halos are 1 cell wide for 5-point stencil
 - could be wider for larger stencils
 - swap halos between neighbouring processes every iteration

Require global sums for, eg, residue calculation

- About to cover some variations on Jacobi
 - which we hope will be faster!
- How can we tell if a method will work at all?
- Necessary (but not sufficient) condition
 - if the method arrives at the correct solution it must stay there
- Is this true for Jacobi? $u_i^{(n+1)} = \frac{1}{2} (u_{i-1}^{(n)} + u_{i+1}^{(n)})$
 - for a solution: $-u_{i-1}^{(n)}+2u_i^{(n)}-u_{i+1}^{(n)}=0$, ie $\frac{1}{2}(u_{i-1}^{(n)}+u_{i+1}^{(n)})=u_i^{(n)}$
 - so, $u_i^{(n+1)} = u_i^{(n)}$ and we stay at the solution
 - worth checking this for other methods

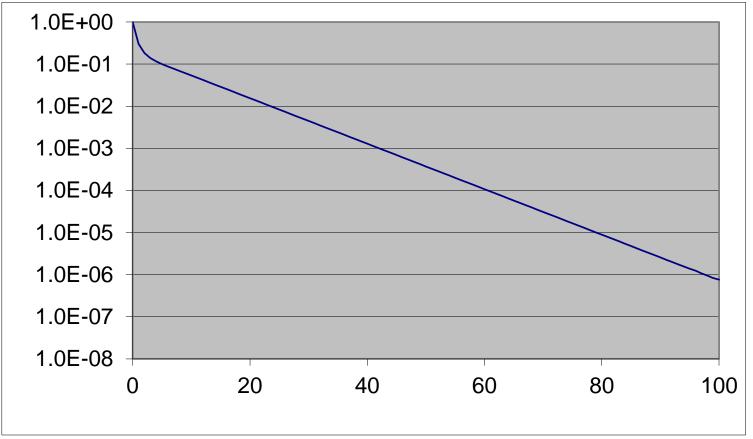
Gauss Seidel

Why do we need both u_{new} and u?

Why not do the update in place?

- this is called the Gauss-Seidel method

Convergence of Gauss-Seidel

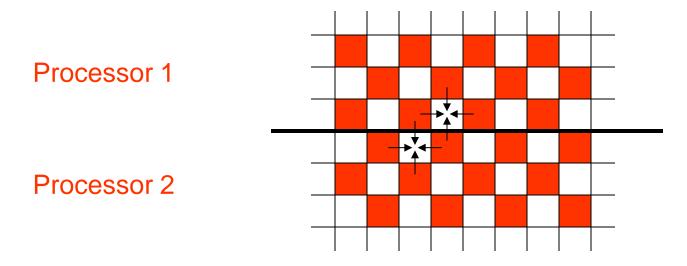


Converges twice as fast as Jacobi

- for less work and less storage!

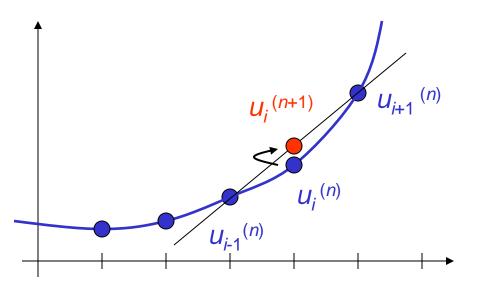
Notes on Gauss Seidel

- Order of the update loop is now significant
 - we used normal (*lexicographic*) order: other orderings possible
- Red-black order divides grid into chequerboard
 - update all the red squares first then all the black ones
 - enables Gauss Seidel method to be parallelised



Over Relaxation

Recall how Jacobi solution progressed



- we have increased the value of u_i by a small amount
 - but we know the real solution is even higher
- why not increase by more than suggested
 - ie multiply the change by some factor *w* > 1

Gauss-Seidel method: $u_i = \frac{1}{2} (u_{i-1} + u_{i+1})$

- ie: $u_i = u_i + [\frac{1}{2} (u_{i-1} - 2u_i + u_{i+1})]$

- Multiply change (in square brackets) by w
 - over-relaxed update: $u_i = u_i + \frac{1}{2} w (u_{i-1} 2 u_i + u_{i+1})$
 - or $U_i = (1-w) U_i + \frac{1}{2} w (U_{i-1} + U_{i+1})$

Notes

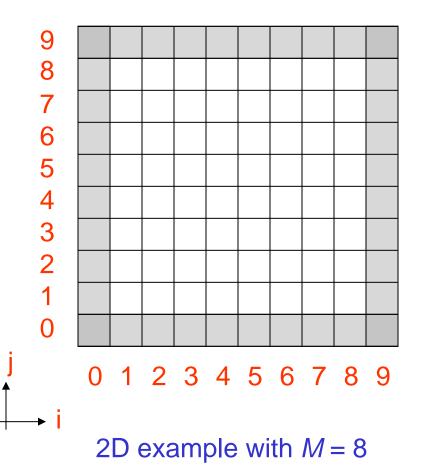
- original method corresponds to w = 1
- if we get to a solution we stay there for any value of w

- Relaxation methods deal directly with equations
 - doesn't matter that we cannot express them as Au = b
 - equally valid for non-linear equations (eg fluid dynamics)
- Non-linear equations can be very unstable
 may need to under-relax to get convergence, ie w < 1

Extending to 2 Dimensions

Initialise

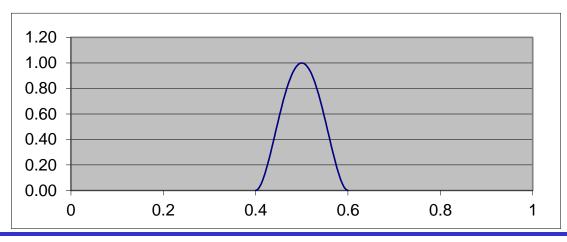
- set boundary values (grey)
 - zero on top, bottom and left
 - hump function on right
- zero interior (white)
- Loop over interior
 - i = 1, 2, ..., M
 - *j* = 1, 2, ..., *M*
 - update $u_{i,j}$ as appropriate
- Repeat until converged
- Write results
 - include boundaries so that the solution looks nice!



Notes (1)

How do we convert from (i,j) to (x,y) coordinates?

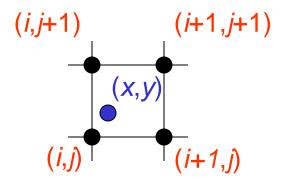
- for a domain of size 1x1:
 - $x = i^* h$ and $y = j^* h$
- What is the hump function?
 - $u(1.0,y) = k^* (y_2 y)^2 * (y y_1)^2$
 - a peak, centred at $(y_2+y_1)/2$, dropping to zero for $y < y_1$ and $y > y_2$
 - for this example, take $y_1 = 0.4$ and $y_2 = 0.6$



Notes (2)

- How do we convert from (x,y) to (i,j) coordinates?
 - eg what lattice point do we look at to find u(0.20, 0.33)?
 - (0.20,0.33) is unlikely to fall exactly on a lattice point

- the four nearest neighbours are:
 - i = int(x/h)
 - *j* = int(*y*/*h*)



- do weighted average of these four values (see exercise notes)

1D Gauss-Seidel update

$$u_i = \left(\frac{1}{2+ah}\right)(u_{i-1} + (1+ah) \ u_{i+1})$$

1D Over-Relaxed update

$$u_i = (1\!-\!w)u_i\!+\!w\left(\!\frac{1}{2+ah}\!\right)(u_{i-1}+(1+ah)\;u_{i+1})$$

2D Discrete Equations

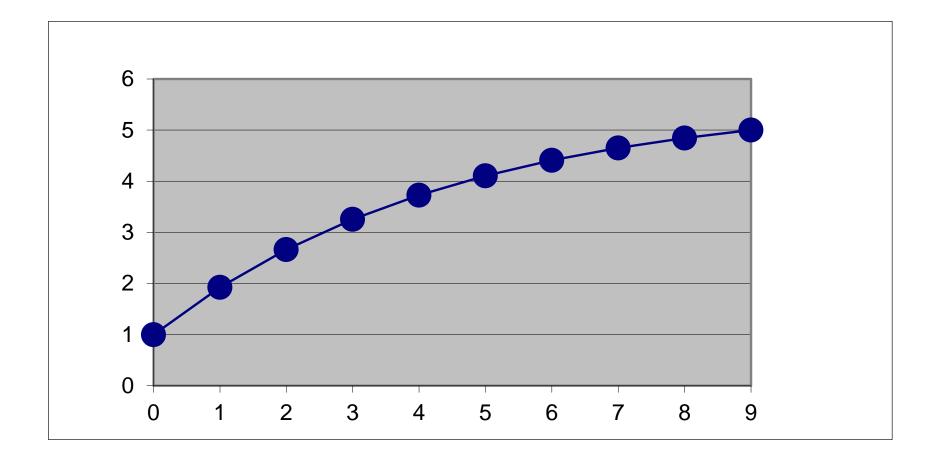
 $-u_{i,j-1}-u_{i-1,j}+(4+(a_x+a_y)h)u_{i,j}-(1+a_xh)u_{i+1,j}-(1+a_yh)u_{i,j+1}=0\\$

 (a_x, a_y) = wind strength from x (East) and y (North) respectively

Notes

- Have multiplied all the equations by h^2
 - equations now explicitly depend on h for a non-zero wind a
 - straightforward to derive update equations for 2D case
- A different convention for Krylov methods
 - maintain the $1/h^2$ factor in matrix A
 - therefore need to multiply RHS by same factor
 - happens to be more convenient
- Finite wind
 - matrix A is now non-symmetric
 - in 1D, lower-diagonal elements are (1+ah), upper elements are 1
 - gives some minor technical issues when normalising the residue
 - see notes
 - if correctly normalised, residue at zero iterations will *always* be 1.0 if the initial guess is a zero solution

Sample solution: *N*=8 and *a*=2.0



Summary

epcc

- Relaxation methods
 - guess at an initial solution
 - update many times and stop when residue is small enough
- Update rule is very straightforward
 - solve exactly for each individual u_i
 - obtain formula by rearranging difference equations so u_i is on the LHS
- Interior points updated according to the PDE
 - boundary points set by the boundary conditions
- Jacobi is the simplest method
 - Gauss Seidel acts "in-place" and requires roughly half the iterations
 - appropriate over-relaxation can accelerate this even more
 - finding the best value of *w* requires some experimentation!