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Parallel Numerical Algorithms 

Solution of Boundary Value Problems 
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Overview of Lecture 

General solution methods 

Relaxation methods 
– Jacobi algorithm 

– testing for convergence 

– Gauss Seidel 

– over-relaxation 

Notes 
– parallelisation 

– non-linear equations 

Pollution problem 
– solution using relaxation methods 

– 2D equations including wind 
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Many methods for solving Au=b 

Direct methods 
– give the solution after a fixed number of operations 

• Gaussian elimination 

• LU factorisation 

Relaxation methods (this lecture) 
– gradually improve solution, starting from an initial guess 

– stop when the answer is sufficiently accurate 

– simple to implement but may be slow to converge on solution 

• or may fail completely! 

Krylov subspace methods (following lectures) 
– iterative (like relaxation methods) but more sophisticated 

– harder to implement but more efficient and reliable 
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Why not use Direct Methods? 

Direct methods explicitly operate on the matrix A 
– eg decompose it into L and U factors 

For PDEs, A is very sparse indeed 
– may contain 99% zeros so clearly we use compressed storage 

– we want to take advantage of this when we solve equations 

Difficult to exploit sparsity for direct methods 
– eg L and U may be dense even though A is sparse 

– for large systems of equations, we may run out of memory! 

Relaxation and Krylov methods exploit sparsity 
– relaxation methods operate on the equations not the matrix 

– Krylov methods comprise mostly matrix-vector multiplications 

• can write efficient routines to do y = A x when A is sparse  
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Relaxation vs Matrix Methods 

Operate directly on the difference equations 
– can forget (almost!) all about the matrix representation Au = b 

for this lecture 

– it turns out that relaxation methods can usefully be understood 

in terms of matrix-vector operations (not immediately obvious) 

• See lecture on “Matrix Splitting Techniques” 

 

For illustrative purposes, look at 1D problem 
– for simplicity with no wind 

– exercise will involve extending this to the 2D problem 

• quite straightforward in practice 
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Relaxation Methods 

1D diffusion equations are 
             - ui-1+ 2 ui - ui+1 = 0,   i = 1, 2, ... N 

Equivalently: ui = ½ (ui-1 + ui+1) 
– why not make an initial guess at the solution 

– then loop over each lattice point i and set ui = ½ (ui-1 + ui+1) 

– ie we solve the equation exactly at each point in turn 

Updating ui spoils solution we just did for ui-1 

– so simply iterate the whole process again and again ... 

– ... and hope we eventually get the right answer! 

This is called the Jacobi Algorithm 
– the simplest possible relaxation method 

 



7 

Jacobi Algorithm 

Use superscript n to indicate iteration number 
– n counts the number of times we update the whole solution 

– equivalent to computer time 

 

Jacobi algorithm for diffusion equation is: 
 

 

Each iteration, calculate u(n+1) in terms of u(n) 

– don’t need to keep copies of all the previous solutions 

– only need to remember two solutions at any time: u and unew 

• corresponding to iterations n and n+1 

ui
(n+1) = ½ ( ui-1

(n) + ui+1
(n) ) 
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Jacobi Pseudo-Code 

declare arrays:    u(0, 1, ..., M+1) 

                unew(0, 1, ..., M+1) 

 

initialise: set boundaries: u(0)   = fixed value u0 

                            u(M+1) = fixed value uM+1 

               initial guess:  u(1, 2, ..., M) = guess value 

 

loop over n = 1, 2, ... 

 

  update:    loop over internal points: i = 1, 2, ... M 

               unew(i) = 0.5*( u(i-1) + u(i+1) ) 

             end loop over i 

 

  copy back: u(1, 2, ..., M) = unew(1, 2, ..., M) 

 

end loop over n 
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Implementation Notes 

Array declarations 
– Fortran: real, dimension(0:M+1) :: u 

– Java: float[] u = new float[M+2]; 

– C: float u[M+2]; 

Arrays explicitly contain boundaries u0 and uM+1 
– we set them according to boundary conditions 

• but we NEVER update them! 

– eg when we copy unew back to u, only copy internal values 

– in pseudo-code, boundary values for unew are never set 

• complete solution is therefore only ever present in u 

• might be more elegant to set boundaries in unew as well 

What to choose for initial guess ui
(0) ? 

– for a simple implementation just set interior values to zero 
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Progress of Solution 
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When to Stop the Iterative Loop 

The solution appears to be getting better 
– must quantify this! 

For dense systems we used the residual 
– we tried to solve Ax=b, so r = b-Ax should be a zero vector 

– in practice, there is a numerical error in solution of each equation 

– error in equation i is the value of ri 

• residual is computed from the sum of the squares of ri 

Can do the same thing for relaxation methods 
– compute the sum of the squares of the error in each equation 

– do this at the end of each iterative loop over n 

• stop if this is small enough 
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Pseudocode for Residual Calculation 

loop over n = 1, 2, ... 

  update:    ... 

  copy back: ... 

 

  compute residue: rnorm = 0.0 

                   loop over i = 1, 2, ..., M 

                     rnorm = rnorm + (-u(i-1)+2*u(i)-u(i+1))2 

                   end loop over n 

                   rnorm = sqrt(rnorm) 

 

   normalise:      res = rnorm / bnorm 

 

   if (res < tolerance) finish 

 

end loop over n  
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Notes on Residual 

For a perfect solution, residue will be zero 
– in practice we will get a finite value 

– usually stop when it is “small”, eg a tolerance of res < 10-6 

– there will be a limit to how small the residual can get 

• can easily hit the limits of single precision 

• use double precision everywhere (or at least perform residual 

calculation using doubles) 

Normalisation 
– need to divide by the norm of the b vector 

– we saw before that b corresponds to the boundary values 

– in 1D:  bnorm = sqrt(u(0)*u(0) + u(M+1)*u(M+1)) 

• in 2D, need to sum values of squares of ui,j over all edges 
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Residual Against Iteration 

Decreases exponentially 
– with a zero initial guess for u, should equal 1.0 at iteration zero 
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Parallelisation 

Very simple for Jacobi 
 

Decompose the problem domain regularly 

across processes/threads 
– for MPI we need halo regions due to i+1, i-1 references 

– halos are 1 cell wide for 5-point stencil 

– could be wider for larger stencils 

– swap halos between neighbouring processes every iteration 

 

Require global sums for, eg, residue calculation 

15 
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Relaxation Methods 

About to cover some variations on Jacobi 
– which we hope will be faster! 

How can we tell if a method will work at all? 

Necessary (but not sufficient) condition 
– if the method arrives at the correct solution it must stay there 

 

Is this true for Jacobi? 
 

– for a solution:  -ui-1 
(n)+2 ui 

(n)-ui+1 
(n) = 0, ie  ½ (ui-1 

(n)
 + ui+1 

(n) ) = ui 
(n)  

– so, ui 
(n+1) = ui

(n) and we stay at the solution 

• worth checking this for other methods 

ui
(n+1) = ½ ( ui-1

(n) + ui+1
(n) ) 
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Gauss Seidel 

Why do we need both unew and u ? 
 

    update:    loop over internal points: i = 1, 2, ... M 

                 unew(i) = 0.5*( u(i-1) + u(i+1) ) 

               end loop over i 

    copy back: u(1, 2, ..., M) = unew(1, 2, ..., M) 

 

Why not do the update in place? 
 

    update:    loop over internal points: i = 1, 2, ... M 

                 u(i) = 0.5*( u(i-1) + u(i+1) ) 

               end loop over i 

 

– this is called the Gauss-Seidel method 
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Convergence of Gauss-Seidel 
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Converges twice as fast as Jacobi 
– for less work and less storage! 
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Notes on Gauss Seidel 

Order of the update loop is now significant 
– we used normal (lexicographic) order: other orderings possible 

Red-black order divides grid into chequerboard 
– update all the red squares first then all the black ones 

– enables Gauss Seidel method to be parallelised 

Processor 1 

Processor 2 
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Over Relaxation 

Recall how Jacobi solution progressed 

 

 

 

 
 

 

– we have increased the value of ui by a small amount 

• but we know the real solution is even higher 

– why not increase by more than suggested 

• ie multiply the change by some factor w > 1 

 

ui-1
(n) 

ui+1 
(n) 

ui 
(n) 

ui 
(n+1) 
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Over-Relaxed Gauss Seidel 

Gauss-Seidel method: ui = ½ ( ui-1+ ui+1) 
 

– ie:  ui = ui +  [ ½ ( ui-1 – 2 ui +  ui+1 ) ] 

 

Multiply change (in square brackets) by w 
 

– over-relaxed update:  ui = ui + ½ w ( ui-1 – 2 ui + ui+1 ) 

– or   ui = (1-w) ui + ½ w ( ui-1 + ui+1 ) 

 

Notes 
– original method corresponds to w = 1 

– if we get to a solution we stay there for any value of w 
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Non-Linear Equations 

Relaxation methods deal directly with equations 
– doesn’t matter that we cannot express them as Au = b 

– equally valid for non-linear equations (eg fluid dynamics) 

 

Non-linear equations can be very unstable 
– may need to under-relax to get convergence, ie w < 1 
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Extending to 2 Dimensions 

Initialise 
– set boundary values (grey) 

• zero on top, bottom and left 

• hump function on right 

– zero interior (white) 

Loop over interior 
• i = 1, 2, ..., M 

• j = 1, 2, ..., M 

– update ui,j as appropriate 

Repeat until converged 

Write results 
– include boundaries so that the 

solution looks nice! 
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2D example with M = 8 
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Notes (1) 

How do we convert from (i,j) to (x,y) coordinates? 
– for a domain of size 1x1:  

• x = i * h and y = j * h 

What is the hump function? 
– u(1.0,y) = k * (y2 –y)2 * (y – y1) 

2 

– a peak, centred at (y2+y1)/2, dropping to zero for y < y1 and y > y2 

– for this example, take y1= 0.4 and y2= 0.6 
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Notes (2) 

How do we convert from (x,y) to (i,j) coordinates? 
 

– eg what lattice point do we look at to find u(0.20,0.33)? 

– (0.20,0.33) is unlikely to fall exactly on a lattice point 

 

 

– the four nearest neighbours are: 

 

• i = int(x/h) 

• j = int(y/h) 

 

– do weighted average of these four values (see exercise notes) 

(x,y) 

(i,j) 

(i+1,j+1) (i,j+1) 

(i+1,j) 
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Convection-Diffusion Equations 

1D Gauss-Seidel update 

 

 

1D Over-Relaxed update 

 

 

2D Discrete Equations 

 

 
    (ax, ay) = wind strength from x (East) and y (North) respectively 
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Notes 

Have multiplied all the equations by h2 

– equations now explicitly depend on h for a non-zero wind a 

– straightforward to derive update equations for 2D case 

A different convention for Krylov methods 
– maintain the 1/h2 factor in matrix A 

• therefore need to multiply RHS by same factor 

• happens to be more convenient 

Finite wind 
– matrix A is now non-symmetric 

– in 1D, lower-diagonal elements are (1+ah), upper elements are 1 

– gives some minor technical issues when normalising the residue 

• see notes 

• if correctly normalised, residue at zero iterations will always be 1.0 if 
the initial guess is a zero solution 
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Sample solution: N=8 and a=2.0 
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Summary 

Relaxation methods 
– guess at an initial solution 

– update many times and stop when residue is small enough 

Update rule is very straightforward 
– solve exactly for each individual ui 

• obtain formula by rearranging difference equations so ui is on the LHS 

Interior points updated according to the PDE 
– boundary points set by the boundary conditions 

Jacobi is the simplest method 
– Gauss Seidel acts “in-place” and requires roughly half the iterations 

– appropriate over-relaxation can accelerate this even more 

• finding the best value of w requires some experimentation! 

 


