Introduction to Monte Carlo (MC) methods

Introduction to MC methods

2

Why Scientists like to gamble

Monte Carlo Methods

|epcc|

- Integration by random numbers
 - Why?
 - How?
- Uncertainty, Sharply peaked distributions
 - Importance sampling
- Markov Processes and the Metropolis algorithm
- Examples
 - statistical physics
 - finance
 - weather forecasting

Integration – Area under a curve

Uncertainty depends on size of δx (N points) and order of scheme, (Trapezoidal, Simpson, etc)

Multi-dimensional integration

|epcc|

1d integration requires *N* points

2d integration requires N²

Problem of dimension *m* requires *N*^{*m*}

Curse of dimensionality

Calculating π by MC

Area of circle = πr^2 Area of unit square, s = 1Area of shaded arc, $c = \pi/4$ $c/s = \pi/4$

Estimate ratio of shaded to non-shaded area to determine π

The algorithm

- y = rand()/RAND_MAX // float {0.0:1.0}
- x = rand()/RAND_MAX
- P=x*x + y*y // x*x + y*y = 1 eqn of circle
- If(P<=1)
 - isInCircle
- Else
 - IsOutCircle
- Pi=4*isInCircle / (isOutCircle+isInCircle)

π from 10 darts

π from 100 darts

 $\pi = 3.0$

π from 1000 darts

Estimating the uncertainty

- Stochastic method

 Statistical uncertainty
- Estimate this

-Run each measurement 100 times with different random number sequences

–Determine the variance of the distribution

$$\sigma^2 = (\overline{x} - x)^2 / k$$

- Standard deviation is σ
- How does the uncertainty scale with N, number of samples

Uncertainty versus N

• Log-log plot $y = ax^{b}$

 $\log y = \log a + b \log x$

- Exponent b, is gradient
- b ≈ -0.5
- Law of large numbers and central limit theorem

 $\Delta \sim 1/\sqrt{N}$

True for all MC methods

- Imagine traffic model
 - can compute average velocity for a given density
 - this in itself requires random numbers ...
- What if we wanted to know average velocity of cars over a week
 - each day has a different density of cars (weekday, weekend, ...)
 - assume this has been measured (by a man with a clipboard)

Density	Frequency
0.3	4
0.5	1
0.7	2

- Procedure:
 - run a simulation for each density to give average car velocity
 - compute average over week by weighting by probability of that density
 - i.e. velocity = $1/7^*$ (

In general, for many states x_i (e.g. density) and some function
 f(x_i) (e.g. velocity) need to compute expectation value <f>

$$\sum_{1}^{N} p(x_i) * f(x_i)$$

probability of occurrence

Aside: A highly dimensional system

Monte Carlo Methods

A high dimensional system

- 1 coin has 1 degree of freedom
 - Two possible states Heads and Tails
- 2 coins have 2 degrees of freedoms
 - Four possible micro-states, two of which are the same
 - Three possible states 1*HH, 2*HT, 1*TT
- n coins have n degrees of freedom
 - 2ⁿ microstates: n+1 states
 - Number of micro-states in each state is given by the binomial expansion coefficient

$$\Omega = 2^{n} = \sum_{r=0}^{n} {}^{r}C_{n}H^{r}T^{n-r} {}^{r}C_{n} = \frac{n!}{r!(n-r)!}$$

Highly peaked distribution

Highly peaked distribution

Probability distribution

Probability distribution

96.48% of all
 possible outcomes lie
 between 40 – 60
 heads

Importance Sampling (i)

- The distribution is often sharply peaked
 - especially high-dimensional functions
 - often with fine structure detail
- Random sampling
 - $-p(x_i) \sim 0$ for many x_i
 - *N* large to resolve fine structure
- Importance sampling
- -180.0 -120.0 -60.0 0.0 60.0 120.0 180 - generate weighted distribution
 - proportional to probability

60.0

With random (or uniform) sampling

 $\langle f \rangle = \sum_{i=1}^{N} p(x_i) * f(x_i)$

- but for highly peaked distributions, $p(x_i) \sim 0$ for most cases
- most of our measurements of $f(x_i)$ are effectively wasted
- large statistical uncertainty in result
- If we generate x_i with probability proportional to $p(x_i)$

$$\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

- all measurements contribute equally
- But how do we do this?

• Want to spend your time in areas proportional to height h(x)

- walk randomly to explore all positions x_i
- if you always head up-hill or down-hill
 - get stuck at nearest peak or valley
- if you head up-hill or down-hill with equal probability
 - you don't prefer peaks over valleys
- Strategy
 - take both up-hill and down-hill steps but with a preference for up-hill

Markov Process

- Generate samples of $\{x_i\}$ with probability p(x)
- x_i no longer chosen independently
- Generate new value from old evolution

$$x_{i+1} = x_i + \delta x$$

- Accept/reject change based on $p(x_i)$ and $p(x_{i+1})$
 - if $p(x_{i+1}) > p(x_i)$ then accept the change
 - if $p(x_{i+1}) < p(x_i)$ then accept with probability $\frac{p(x_{i+1})}{p(x_i)}$
- Asymptotic probability of x_i appearing is proportional to p(x)
- Need random numbers
 - to generate random moves δx and to do accept/reject step

AA Markov 1856-1922

• The generated sample forms a Markov chain

- The update process must be ergodic
 - Able to reach all x
 - If the updates are non-ergodic then some states will be absent
 - Probability distribution will not be sampled correctly
 - computed expectation values will be incorrect!
- Takes some time to equilibrate
 - need to forget where you started from
- Accept / reject step is called the Metropolis algorithm

Markov Chains and Convergence

- Many applications use MC
- Statistical physics is an example
- Systems have extremely high dimensionality
 - e.g. positions and orientations of millions of atoms
- Use MC to generate "snapshots" or configurations of the system
- Average over these to obtain answer
 - Each individual state has no real meaning on its own
 - Quantities determined as averages across all the states

- Used to price options
- An option is a contract, holder has the right
 - buy an asset call
 - sell an asset put
 - at some time in the future (T)
 - For a predetermined price (*strike* price) X
- Terminal pay off for the holder is then

$$\max(\pm(S_T-X),0)$$

- where S_T is the price of the underlying asset at time T
- \pm call/put
- How much should the option cost?

MC in Finance II

- Price model called Black-Scholes equation
 - Partial differential equation
 - based on geometric brownian motion (GMB) of underlying asset
- Assumes a "perfect" market
 - markets are not perfect, especially during crashes!
 - Many extensions
 - area of active research
- Use MC to generate many different GMB paths
 - statistically analyse ensemble

Numerical Weather Prediction

Image taken by NASA's Terra Satellite 7th January 2010

Britain in the grip of a very cold spell of weather

NWP in the UK

- Weather forecasts used by the media in the UK (e.g. BBC news) are generated by the UK Met office
 - Code is called the Unified Model
 - Same code runs climate model and weather forecast
 - Can cover the whole globe

- Newest supercomputer
 - Cray XC40
 - almost half a million processor-cores
 - weighs 140 tonnes

(http://www.bbc.co.uk/news/science-environment-29789208)

Initial conditions and the Butterfly effect

- The equations are extremely sensitive to initial conditions
 - Small changes in the initial conditions result in large changes in outcome
- Discovered by Edward Lorenz circa 1960
 - 12 variable computer model
 - Minute variations in input parameters
 - Resulted in grossly different weather patterns

- The Butterfly effect
 - The flap of a butterfly's wings can effect the path of a tornado
 - My prediction is wrong because of effects too small to see

Chaos, randomness and probability

 A Chaotic system evolves to very different states from close initial states

 no discernible pattern

- We can use this to estimate how reliable our forecast is:
- Perturb the initial conditions
 - -Based on uncertainty of measurement
 - -Run a new forecast
- Repeat many times (random numbers to do perturbation)

 –Generate an "ensemble" of forecasts
 –Can then estimate the probability of the forecast being correct
- If we ran 100 simulations and 70 said it would rain
 - -probability of rain is 70%
 - -called ensemble weather forecasting

Α

Β

Optimisation Problems

- Optima of function rather than averages
- Often need to minimise or maximise functions of many variables
 - minimum distance for travelling salesman problem
 - minimum error for a set of linear equations
- Procedure
 - take an initial guess
 - successively update to progress towards solution
- What changes should be proposed?
 - could reduce/increase the function with each update (steepest descent/ascent) ...
 - ... but this will only find the local minimum/maximum

- Add a random component to updates
- Sometimes make "bad" moves
 - possible to escape from local minima
 - but want more up-hill steps than down-hill ones
- Hill-walking example
 - find the highest peak in the Alps by maximising h(x)

Simulated Annealing

- Monte Carlo technique applied to optimisation
- Analogy with Metropolis and Statistical Mechanics
- Initial "high-temperature" phase
 - accept both up-hill and down-hill steps to explore the space
- Intermediate phase
 - start to prefer up-hill steps to look for highest mountain
- Final "zero-temperature" phase
 - only accept up-hill steps to locate the peak of the mountain
- A lot of freedom in how you vary the temperature ...

• Random numbers used in many simulations

• Mainly to efficiently sample a large space of possibilities

- One state generated from another: Markov Chain
 - Metropolis algorithm gives a guided random walk
- Real simulations can require trillions of random numbers!
 - parallelisation introduces additional complexities ...