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The Mandelbrot Set 

• The Mandelbrot Set is the set of numbers resulting from 

repeated iterations of the complex function:                                                                         

 
CZZ

nn




2

1 with the initial condition 0
0
Z

• C = x0 +iy0 belongs to the Mandelbrot set if |Z| 

converges. 

   Z = x + iy    Z2 = x2 + i2xy – y2 



The Mandelbrot Set cont. 

• Separating out the real and imaginary parts gives: 
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• Take the threshold value as: 

 

• Set the maximum number of iterations 

– Assume that     does not diverge at higher values of  
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The Julia Set 

• Similar algorithm to Mandelbrot Set 

 

• Starting coordinates x0 and y0 represent fixed point from 

inside the Mandelbrot set 

 



Visualisation  

To visualise a Mandelbrot/Julia set: 

 

• Represent the complex plane as a 2D grid. 

• Calculate number of iterations N for complex numbers C 

corresponding to points on the grid. 

• Convert the value of N to a colour and plot this on the 

grid. 

 



Parallelisation 

• Values for each coordinate depend only on the previous values 
at that coordinate. 
• decompose 2D grid into equally sized blocks 

• no communications between blocks needed. 

• Don’t know in advance how much work is needed. 
• number of iterations across the blocks varies. 

• work dynamically assigned to workers as they become available. 

 

Implementation 

• Split the grid into blocks: 
• each block corresponds to a task. 

• master process hands out tasks to worker processes. 

• workers return completed task to master. 

 



Example: Parallelisation on 4 CPUs 
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Parallelisation cont. 

• taskfarm run on 5 CPUs 
1 master 

4 workers 

• total number of tasks = 16 

1 2 3 4 

1 4 2 1 

3 3 1 3 

4 4 4 4 



Example results –  

                          fixed number of workers 



Results cont. 



Example results – 

                           fixed number of tasks 



Results cont. 



Key points to take away 

TASK FARMS 

• Also known as the master/worker pattern 

• Allows a master process to distribute work to a set of 

workers processes.  

• Can be used for other types of tasks but it complicates 

the situation and other patterns may be more suitable 

for implementing.  

• Master process is responsible for creating, distributing 

and gathering the individual jobs.  



Key points to take away 

TASKS 

• Units of work 

• Vary in size, do not have to be of consistent execution 

time. If execution times are known it can help with load 

balancing.  

QUEUES 

• Master generates a pool of tasks and puts them in a 

queue 

• Workers assigned task from queue when idle 



Key points to take away 

LOAD BALANCING 

• How a system determines how work or tasks are 

distributed across workers (processes or threads) 

• Successful load balancing avoids idle processes and 

overloading single cores 

• Poor load balancing leads to under-utilised cores, 

reducing performance. 

 



Key points to take away 

COST 

• Increasingly important 

• Finite budgets require optimal use of resources 

requested.  

• Load balancing is just one method of ensuring optimal 

usage and avoiding wasting resources. 

• More power and resources do not necessarily mean  

improved performance. 

• Always ask – is it necessary to run this on 4000 cores or 

could it be run on 2000 more efficiently? 


