
Fractals
Outcomes

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

http://www.archer.ac.uk
support@archer.ac.uk

The Mandelbrot Set

• The Mandelbrot Set is the set of numbers resulting from

repeated iterations of the complex function:

CZZ

nn

2

1 with the initial condition 0
0
Z

• C = x0 +iy0 belongs to the Mandelbrot set if |Z|

converges.

 Z = x + iy Z2 = x2 + i2xy – y2

The Mandelbrot Set cont.

• Separating out the real and imaginary parts gives:

0

0

22

2 yxyZ

xyxZ

i

r

• Take the threshold value as:

• Set the maximum number of iterations

– Assume that does not diverge at higher values of

0.4
2

Z

N
Z N

The Julia Set

• Similar algorithm to Mandelbrot Set

• Starting coordinates x0 and y0 represent fixed point from

inside the Mandelbrot set

Visualisation

To visualise a Mandelbrot/Julia set:

• Represent the complex plane as a 2D grid.

• Calculate number of iterations N for complex numbers C

corresponding to points on the grid.

• Convert the value of N to a colour and plot this on the

grid.

Parallelisation

• Values for each coordinate depend only on the previous values
at that coordinate.
• decompose 2D grid into equally sized blocks

• no communications between blocks needed.

• Don’t know in advance how much work is needed.
• number of iterations across the blocks varies.

• work dynamically assigned to workers as they become available.

Implementation

• Split the grid into blocks:
• each block corresponds to a task.

• master process hands out tasks to worker processes.

• workers return completed task to master.

Example: Parallelisation on 4 CPUs

x

master workers

CPU 1

CPU 2 CPU 3 CPU 4

 7

 4

 1

 1 2 3

 8

 2

 9

 6

 3

 5 5 2

y

Parallelisation cont.

• taskfarm run on 5 CPUs
1 master

4 workers

• total number of tasks = 16

1 2 3 4

1 4 2 1

3 3 1 3

4 4 4 4

Example results –

 fixed number of workers

Results cont.

Example results –

 fixed number of tasks

Results cont.

Key points to take away

TASK FARMS

• Also known as the master/worker pattern

• Allows a master process to distribute work to a set of

workers processes.

• Can be used for other types of tasks but it complicates

the situation and other patterns may be more suitable

for implementing.

• Master process is responsible for creating, distributing

and gathering the individual jobs.

Key points to take away

TASKS

• Units of work

• Vary in size, do not have to be of consistent execution

time. If execution times are known it can help with load

balancing.

QUEUES

• Master generates a pool of tasks and puts them in a

queue

• Workers assigned task from queue when idle

Key points to take away

LOAD BALANCING

• How a system determines how work or tasks are

distributed across workers (processes or threads)

• Successful load balancing avoids idle processes and

overloading single cores

• Poor load balancing leads to under-utilised cores,

reducing performance.

Key points to take away

COST

• Increasingly important

• Finite budgets require optimal use of resources

requested.

• Load balancing is just one method of ensuring optimal

usage and avoiding wasting resources.

• More power and resources do not necessarily mean

improved performance.

• Always ask – is it necessary to run this on 4000 cores or

could it be run on 2000 more efficiently?

