Fractals

Outcomes

N
Reusing this material

©10Ee

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must
distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

epce

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

EPSRC
c=ar COCC

THE SUPERCOMPUTER COMPANY

http://www.archer.ac.uk
support@archer.ac.uk

epce

5
qfo N7 e
3
|
o
<

e
The Mandelbrot Set

The Mandelbrot Set is the set of numbers resulting from
repeated iterations of the complex function:

2
Z. =2 ,+C \ith the initial condition L, = 0

. C =X, +iy, belongs to the Mandelbrot set if |Z|

converges.

Z=X+1y D> Z°2=X°+ 02Xy —Y?

epce

qfo 7 s,
~ N

o

o

e
The Mandelbrot Set cont.

Separating out the real and imaginary parts gives:
Z' =X -y + X,
7' = 2Xy +Y,
* Take the threshold value as:
2
z[> 4.0

e Set the maximum number of iterations N
— Assume that z does not diverge at higher values of N

epce

5
qfo 7 s,
~ N
o

o

e
The Julia Set

- Similar algorithm to Mandelbrot Set

- Starting coordinates X, and Y, represent fixed point from
inside the Mandelbrot set

L
Visualisation

To visualise a Mandelbrot/Julia set:

Represent the complex plane as a 2D grid.

Calculate number of iterations N for complex numbers C
corresponding to points on the grid.

Convert the value of N to a colour and plot this on the
grid.

&5
N ~7 | @
~ e -
o
P

epce

L
Parallelisation

Values for each coordinate depend only on the previous values
at that coordinate.

decompose 2D grid into equally sized blocks
no communications between blocks needed.
Don’t know in advance how much work is needed.
number of iterations across the blocks varies.
work dynamically assigned to workers as they become available.

Implementation

Split the grid into blocks:
each block corresponds to a task.
master process hands out tasks to worker processes.
workers return completed task to master.

epce

N
Example: Parallelisation on 4 CPUs

master workers

CPU 1

CPU 2 CPU 3 CPU 4

5
N ~7 €
3
==
o
o

epcc

L
Parallelisation cont.

e taskfarm run on 5 CPUs
1 master
4 workers

e total number of tasks = 16

epCce

;
N ~7 | @
3
|
o
P

e
Example results —
fixed number of workers

Example results for the default image size (768 = 768 pixels), fixed number of iterations (S000), fixed
number of workers (16) and varying number of tasks :

| MNumber of Tasks (Task Size) | Time (s) | Load Imbalance Factor
[16 (192 = 192) 1.93 5.034
[6d (96 = 96) 0.59 1.501

256 (48 x 48) .43 1.108

4096 (12 = 12) 0.4 1.017

36864 (4 = 4) 0.4 1.003

147456 (2 = 2) 0.47 1.017

SE9E24 (1 = 1) 0.80 1.006

Table 2: Example execution Times for 16 workers and varying number of Tasks.

(©)=rcher €0CC

Results cont.

25 - e=gmmexecution time
e==predicted time

2 -
wvi
£
7]
=

o 15 1
2
)
=1
£
o

o 17
E
[

0.5

0 L L L L L L L L L L L 1
16 36 64 256 1024 4096 16384 23716 36864 65536 147456 589824
Number of tasks

epCce

)
P,
()
J
(D
)

L
Example results —
fixed number of tasks

Example results for the default image size (768 = 768 pixels), fixed number of iterations (5000), 64 tasks
of the size of 96 x 96 pixels and varying number of workers :

Workers | Time (s) | Avg. Workload | Max Workload | Min Workload | Load Imbalance Factor
4 1.52 124505763 126124383 122696852 1.01
B 0.96 62252881 TT744803 51117022 1.25
16 0.59 31126440 46737752 10968369 1.50
32 0.57 15563220 46114456 67614 2.96
B 0.57 TT81610 46089216 G246 5.92

Table 1: Example Run-Times for different number of workers and their Avg/Min/Max Workloads.

archer

epCce

I
Results cont.

1.8 -7
e=(meTime
1.6 -
@sl»|6ad imbalance -6
1.4 -
— F 5 L=
T o
9 1.2 7]
[(1]
"'O-J" L
£ 1- 48
+ K
c
0 08 - L 3 3
5 £
o -
g 06 - g
w =
0.4
-1
0.2
0 T T T T T T 0
0 10 20 30 40 50 60 70
Number of workers

N
Key points to take away

TASK FARMS
Also known as the master/worker pattern

Allows a master process to distribute work to a set of
workers processes.

Can be used for other types of tasks but it complicates
the situation and other patterns may be more suitable
for implementing.

Master process is responsible for creating, distributing
and gathering the individual jobs.

epcc

o
N ~7 €
A
==
o
o

N
Key points to take away

TASKS
Units of work

Vary in size, do not have to be of consistent execution
time. If execution times are known it can help with load
balancing.

QUEUES

Master generates a pool of tasks and puts them in a
gueue

Workers assigned task from queue when idle

epcc

;
N ~7 | @
3
|
o
P

Key points to take away

LOAD BALANCING

How a system determines how work or tasks are
distributed across workers (processes or threads)

Successful load balancing avoids idle processes and
overloading single cores

Poor load balancing leads to under-utilised cores,
reducing performance.

.
N ~7 | @
3
|
o
P

epce

N
Key points to take away

COST
Increasingly important

Finite budgets require optimal use of resources
reguested.

Load balancing is just one method of ensuring optimal
usage and avoiding wasting resources.

More power and resources do not necessarily mean
Improved performance.

Always ask — is it necessary to run this on 4000 cores or
could it be run on 2000 more efficiently?

epce

&5
N ~7 | @
~ e -
o
P

