# **Orbits Exercise**

**Solutions** 





#### Euler scheme: trajectory and energy







### Euler scheme: trajectory and energy







#### Leapfrog scheme: trajectory and energy







## Summary

- Reducing truncation errors is very important
- Requires changing the algorithm
  - Euler: error is proportional to  $\Delta t$
  - Leapfrog: error is proportional to  $\Delta t^2$
- If  $\Delta t = 0.01$  and error in energy is 10 with Euler algorithm, how much work to reduce error to 0.1?
  - same algorithm:  $\Delta t = 0.0001$  and **100 times** the computational cost
  - Leapfrog algorithm:  $\Delta t = 0.01$  and **roughly the same** computational cost



