
Scientific Python

Neelofer Banglawala nbanglaw@epcc.ed.ac.uk
Kevin Stratford kevin@epcc.ed.ac.uk

Original course authors:
Andy Turner
Arno Proeme

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

1 of 10 23/11/2015 00:00

www.archer.ac.uk

support@archer.ac.uk

[Intro] Course overview

Course website:

 http://archer.ac.uk/training/courses/2015/11/SciPy_Imp/

You will need:

 1. Access to Python (+ packages) & software tools:

 i. your own laptop

 ii. ARCHER

 see ScientificPython_PreparatoryCourseInformation.pdf

 1. Course material

 wget URL

Please make sure you have signed in and have a Guset Account sheet

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

2 of 10 23/11/2015 00:00

[Intro] Scientific computing

Typical workflow

Generate data
Usually from simulation on HPC facilities
(also from experiment!)

Process data

Generate appropriate results from data

Visualise results
To understand the significance of our work and gain scientific understanding

Communicate results
Through publications, presentations, web, etc.

[Intro] Why Python? I

Rich set of scientific computing functionality
Powerful numerical and scientific libraries
Rich plotting functionality
Excellent support for interfacing to existing Fortran/C/C++ code, use Python as
"glue"
Can create unified, multipurpose workflow environment for data analysis and
visualisation

Python is a high level, easy-to-read language
Simple to learn and code in
High level syntax means more time spent thinking about what code does rather than how to write it
Fully-featured, general purpose language that supports different programming styles, e.g. object-
oriented

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

3 of 10 23/11/2015 00:00

[Intro] Why Python? II

Interactive interface as well as (non-interactive) scripting
Enables rapid prototyping of algorithms

Free and Open Source
Can contribute to Scientific Python ecosystem

Viable alternative to Matlab and similar

Using interactive Python, especially iPython, is similar to using other scripting languages e.g. Matlab,
Mathematica, Maple, R, etc.

As popularity grows more and more packages become available, Python is increasingly the go-to choice for tying
everything together

Useful links

https://www.python.org/
https://wiki.python.org/moin/NumericAndScientific

[Intro] Core packages for scientific computing

IPython
Advanced Python shell

NumPy
Tools for manipulating numerical arrays efficiently

Matplotlib
Rich featured plotting in 2D and 3D

SciPy
High-level scientific routines for common algorithms e.g. numerical integration, optimisation, fourier
transforms

f2py
Interface Fortran/C external code with Python
Comes with NumPy

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

4 of 10 23/11/2015 00:00

[Intro] Other useful packages

mpi4py
message passing parallel programming
covered in future versions of this course

pandas
data analysis library

scikit-learn
machine learning

... and many more ...

[Intro] Python on ARCHER I

ARCHER is a Cray XC30 MPP supercomputer with 4920 compute nodes (the backend), 8 login nodes and 2
post-processing (pp) nodes (the frontend).

By default, Python is not loaded on ARCHER

Need to choose a Python distribution according to where you will run your
code:

Anaconda : for the frontend i.e. login nodes, pp nodes
module load anaconda
contains core scientific computing packages such as NumPy

native : for the backend i.e. compute nodes
module load python-compute
need to separately load packages such as numpy, module load pc-numpy

http://archer.ac.uk
http://www.archer.ac.uk/documentation/user-guide/python.php

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

5 of 10 23/11/2015 00:00

[Intro] Python on ARCHER II

Log into ARCHER and load Python:

In a command terminal, log into the ARCHER frontend (login nodes):
ssh -X username@login.archer.ac.uk

Check your current location with:
pwd

Create a directory for this course and navigate to it:
mkdir <directory_name >
cd <directory_name>

Load the Anaconda distribution:
module load anaconda

If you wish to use ARCHER for the remainder for the course, get the course material:
wget URL

[Intro] How to use Python?

Python code is not generally compiled into a standalone executable, but executed by the Python interpreter :
python

Non-interactive mode : supply the Python interpreter with an input script file
Python script files end in .py extension
~$ python myscript.py

Interactive mode run Python interpreter without an input script file
Interpreter runs as a Python shell (interactive Python runtime environment)

Alternative interactive modes
IPython : enchanced Python shell, ideal for data manipulation and visualisation
Jupyter (formerly IPython) notebook : web browser-based interactive document

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

6 of 10 23/11/2015 00:00

[Intro] IPython shell

IPython extends the standard Python shell with a number of useful things, including

Tab completion object_name.
Getting help, ? object_name?
'Magic' commands %run (run python script within shell)
History of commands %hist
Saving of sessions %save
System shell access, ! files = !ls -l
Pasting of code snippets from websites
Built-in debugging and profiling

quickref command gives a summary of capabilities

http://ipython.readthedocs.org/en/stable/overview.html

[Intro] Hello ARCHER!

Create 'helloarcher.py', use editors 'vim', 'emacs', 'nano' or 'gedit':

 #!/usr/bin/env python

 # Hello ARCHER python program

 print "Hello ARCHER!";

</p>

1. Run 'helloarcher.py' : python helloarcher.py

2. Launch an IPython shell and type : print "Hello ARCHER!"

3. Run the script from within an IPython shell using 'magic' : %run helloarcher.py

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

7 of 10 23/11/2015 00:00

[Intro] Python basics recap I

Data types
integer (-1), float (3.1412), string ('this' or "this")
dynamically typed: don't explicitly specify datatype when declaring variable

Data structures
list ([3,"a",3.14,False]), dictionary ({"key1" : "value1", "key1" : "value1"}), tuples ((1,2,3) or (1.2,) or ()
)

Whitespace matters : code blocks are indented
for item in list:

#do some stuff

Import modules:
import module --> module.name
from module import name` --> call name
avoid universal imports i.e. from module import *

[Intro] Python basics recap II

Careful - variables are references
variables are references to objects: let a = 3, b = a; if b = 5 then a = 5 (try it!)

Functions
functions belonging to one object type accessed with dot operator: object.method e.g. list.sort()
functions applicable to multiple object types don't use dot operator e.g. len("string"), len(list)
can define your own function :

def myfunc(arg1, arg2):
function body is indented
return something

Misc
Many useful built-in functions such as max, min, reverse
Useful modules in the Standard Library such sys, math

Documentation
https://docs.python.org/2/
https://www.codecademy.com/learn/python

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

8 of 10 23/11/2015 00:00

[Intro] Warm-up exercise I

Define a function age that takes a list of years between 1950 and 2014 and returns the median age, and the two ages
closest to it. Assume the input list is randomly ordered and has an odd number of elements , where . So for:

years = [1989, 1955, 2011, 1943, 1975], age returns [26, 40, 60]

Note: for a sorted list of numbers, the median is the number in the middle of the list.

1. You will need to generate a list of years.

Hint: you may want to use random.randint(start, stop)

2. You will need to sort the list.

3. List indexing may help you to get the final result e.g. list[3:5]

4. Make sure to test your function.

[Intro] Warm-up exercise (a solution)

In []: # function to calculate the median age and
its two neighbours from a random list of
years
import numpy as np

def medianage(years):
ages=[];
for y in years:

ages.append(2015-y);
ages.sort()
n = len(ages);
mid = n/2;
return ages[mid-1:mid+2];

years = [1989, 1955, 2011, 1943, 1975];
medianage(years);

N N >= 3

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

9 of 10 23/11/2015 00:00

[Intro] Warm-up exercise II (optional)

Now read the list of years from a text file, 'years.txt', which should have the total number of years in the first line,
followed by a numbered list of years:

 total number of years
 1 year
 ...

To generate the input file 'years.txt', you may need:

import sys, yearsfn=open(filename, "w"), input.close(), output.write("{0:2d} {1:2d}\n".format(i, j))

To read the input file 'years.txt', you may need:

input=open(filename, "w"), line = infile.readline(), line.rstrip(), line.split(), int("9"),

Optional : could you use list comprehension (if you haven't already)?
 E.g. squared = [x*x for x in list]

[Intro] Summary

We have reviewed some core Python basics

We have also been introduced to the IPython shell

We are now ready to look at explore the packages that constitute the backbone of scientific python

Next session : NumPy

N

L01_Students_Introduction http://localhost:8889/nbconvert/html/L01_IntroToScientificPy...

10 of 10 23/11/2015 00:00

