Yot ¢

S £

i 3
O

R =

O Q. =

=) =

O o

O >

et C

— L

o O

%

D

-

=

(¢b)]

e A
- L\ 3“‘
Overview B0 |COCC

e Basic Concepts in OpenMP

* History of OpenMP

* Compiling and running OpenMP programs

http://www.epcc.ed.ac.uk/

What is OpenMP?

* OpenMP is an API designed for programming shared
memory parallel computers.

* OpenMP uses the concepts of threads and tasks
* OpenMP is a set of extensions to Fortran, C and C++

* The extensions consist of:
— Compiler directives
— Runtime library routines
— Environment variables

http://www.epcc.ed.ac.uk/

Directives and sentinels e Ny S

* A directive is a special line of source code with meaning only
to certain compilers.

* A directive is distinguished by a sentinel at the start of the
line.

* OpenMP sentinels are:
— Fortran: ! SOMP
— C/C++: #pragma omp

* This means that OpenMP directives are ignored if the code is
compiled as regular sequential Fortran/C/C++.

http://www.epcc.ed.ac.uk/

Parallel region

* The parallel region is the basic parallel construct in OpenMP.
* A parallel region defines a section of a program.
* Program begins execution on a single thread (the master thread).

* When the first parallel region is encountered, the master thread
creates a team of threads (fork/join model).

* Every thread executes the statements which are inside the parallel
region

* Atthe end of the parallel region, the master thread waits for the
other threads to finish, and continues executing the next statements

http://www.epcc.ed.ac.uk/

Tl e 18
i W 3“‘
Parallel region n W

PROGRAM FRED

Sequential part

! $OMP PARALLEL

Parallel region

!$OMP END PARALLEL

Sequential part

! $OMP PARALLEL

Parallel region

! $OMP END PARALLEL

Sequential part

http://www.epcc.ed.ac.uk/

Shared and private data

* |nside a parallel region, variables can either be shared or private.
* All threads see the same copy of shared variables.
* All threads can read or write shared variables.

* Each thread has its own copy of private variables: these are invisible to

other threads.

* A private variable can only be read or written by its own thread.

http://www.epcc.ed.ac.uk/

Parallel loops

* |n a parallel region, all threads execute the same code

* OpenMP also has directives which indicate that work should be divided
up between threads, not replicated.

— this is called worksharing

* Since loops are the main source of parallelism in many applications,
OpenMP has extensive support for parallelising loops.

* The are a number of options to control which loop iterations are executed
by which threads.

* Itis up to the programmer to ensure that the iterations of a parallel loop
are independent.

* Only loops where the iteration count can be computed before the
execution of the loop begins can be parallelised in this way.

B) 1 g™
- " L

http://www.epcc.ed.ac.uk/

Synchronisation

* The main synchronisation concepts used in OpenMP are:

* Barrier

— all threads must arrive at a barrier before any thread can proceed past it
— e.g. delimiting phases of computation

e Critical region
— a section of code which only one thread at a time can enter
- e.g.

* Atomic update

— an update to a variable which can be performed only by one thread at a time
— e.g. modification of shared variables

* Master region

— a section of code executed by one thread only
— e.g. initialisation, writing a file

http://www.epcc.ed.ac.uk/

Brief history of OpenMP

* Historical lack of standardisation in shared memory directives.
— each hardware vendor provided a different API
— mainly directive based
— almost all for Fortran
— hard to write portable code

* OpenMP forum set up by Digital, IBM, Intel, KAl and SGI. Now includes
most major vendors (and some academic organisations, including
EPCCQC).

* OpenMP Fortran standard released October 1997, minor revision (1.1)
iIn November 1999. Major revision (2.0) in November 2000.

http://www.epcc.ed.ac.uk/

History (cont.) o N o

* OpenMP C/C++ standard released October 1998. Major revision (2.0) in
March 2002.

* Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.
— no new features, but extensive rewriting and clarification

* Version 3.0 released in May 2008

— new features, including tasks, better support for loop parallelism and
nested parallelism

— only recently available in some compilers

* Version 3.1 released in June 2011
— corrections and some minor new features

http://www.epcc.ed.ac.uk/

OpenMP resources

* Web site:

WWW . openmp . org

— Official web site: language specifications, links to compilers and
tools, mailing lists

* Book:

— “Using OpenMP: Portable Shared Memory Parallel Programming”
Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022

— however, does not contain OpenMP 3.0/3.1 features

http://www.epcc.ed.ac.uk/

Compiling and running OpenMP m

* OpenMP is built-in to most of the compilers you are likely to
use.

* To compile an OpenMP program you usually need to add a

(compiler-specific) flag to your compile and link commands.

— —-fopenmp for gcc/gfortran
— —openmp for Intel compilers
— no flags for Cray compilers as it is enabled by default

* The number of threads which will be used is determined at

runtime by the OMP NUM THREADS environment variable

— set this before you run the program
— €.¢. export OMP NUM THREADS=4

* Run in the same way you would a sequential program
— type the name of the executable

-

http://www.epcc.ed.ac.uk/

. A B LA
Running ——— Lo |SOCC)

To run an OpenMP program interactively:

* Set the number of threads using the environment variable
OMP_NUM THREADS

e.gJ. export OMP NUM THREADS=8 (bash/ksh)
Oor setenv OMP NUM THREADS 8 (csh/tcsh)

e Canrun just as you would a sequential program.

http://www.epcc.ed.ac.uk/

-1 e
Running in the ARCHER batéh"sm

* ARCHER is configured as a front end (login nodes) and a back
end (compute nodes)

* The frontend is for interactive use, the backend for batch jobs
only. Development and debugging should be done on the
frontend.

* Tologinin: ssh -X guestXX@login.archer.ac.uk
* Change to the work directory: ecd /work/yl14/yl4/guestXX/

* For performance measurements, run on the backend in a batch
gueue (we have reserved queues for courses), e.g.:

cp -1 ompbatch.pbs myprogram.pbs
gsub —g coursel myprogram.pbs

http://www.epcc.ed.ac.uk/

Running (cont.) TSR NS S elelel)

* The number of threads must be set inside the script file:

export OMP NUM THREADS=4

* On archer, we have to use the job launcher program aprun

— launch a single process on one node
— OpenMP program will spawn multiple threads at runtime

http://www.epcc.ed.ac.uk/

Exercise

Hello World

* Aim: to compile and run a trivial program.

* Vary the number of threads using the OMP_NUM THREADS environment
variable.

* Run the code several times - is the output always the same?

http://www.epcc.ed.ac.uk/

