
Parallel Programming
Overview and Concepts

Outline
• Decomposition

• Geometric decomposition

• Task farm

• Pipeline

• Loop parallelism

• General parallelisation considerations

• Parallel code performance metrics and evaluation

• Parallel scaling models

Why use parallel programming?

It is harder than serial so why bother?

Why?

• Parallel programming is more difficult than its sequential

counterpart

• However we are reaching limitations in uniprocessor design

• Physical limitations to size and speed of a single chip

• Developing new processor technology is very expensive

• Some fundamental limits such as speed of light and size of atoms

• Parallelism is not a silver bullet

• There are many additional considerations

• Careful thought is required to take advantage of parallel machines

Performance

• A key aim is to solve problems faster

• To improve the time to solution

• Enable new scientific problems to be solved

• To exploit parallel computers, we need to split the program up
between different processors

• Ideally, would like program to run P times faster on P
processors

• Not all parts of program can be successfully split up

• Splitting the program up may introduce additional overheads such as
communication

Parallel tasks
• How we split a problem up in parallel is critical

1. Limit communication (especially the number of messages)

2. Balance the load so all processors are equally busy

• Tightly coupled problems require lots of interaction
between their parallel tasks

• Embarrassingly parallel problems require very little (or no)
interaction between their parallel tasks
• E.g. the image sharpening exercise

• In reality most problems sit somewhere between two
extremes

Decomposition

How do we split problems up to solve efficiently in parallel?

Decomposition

• One of the most challenging, but also most important,

decisions is how to split the problem up

• How you do this depends upon a number of factors

• The nature of the problem

• The amount of communication required

• Support from implementation technologies

• We are going to look at some frequently used

decompositions

Geometric decomposition

• Take advantage of the geometric properties of a problem

Geometric decomposition

• Splitting the problem up does have an associated cost

• Namely communication between processors

• Need to carefully consider granularity

• Aim to minimise communication and maximise computation

Halo swapping

• Swap data in bulk at pre-

defined intervals

• Often only need

information on the

boundaries

• Many small messages

result in far greater

overhead

• Execution time determined by slowest processor

• each processor should have (roughly) the same amount of work,

i.e. they should be load balanced

• Assign multiple partitions per processor

• Additional techniques such as work stealing available

Load imbalance

Task farm (master worker)
• Split the problem up into distinct, independent, tasks

• Master process sends task to a worker

• Worker process sends results back to the master

• The number of tasks is often much greater than the

number of workers and tasks get allocated to idle workers

Master

Worker 3 Worker 2 Worker 1 Worker n …

Task farm considerations

• Communication is between the master and the workers
• Communication between the workers can complicate things

• The master process can become a bottleneck
• Workers are idle waiting for the master to send them a task or

acknowledge receipt of results

• Potential solution: implement work stealing

• Resilience – what happens if a worker stops responding?
• Master could maintain a list of tasks and redistribute that work’s

work

Pipeline
• A problem involves operating on many pieces of data in

turn. The overall calculation can be viewed as data

flowing through a sequence of stages and being operated

on at each stage.

• Each stage runs on a processor, each processor

communicates with the processor holding the next stage

• One way flow of data

S
ta

g
e

1

S
ta

g
e

2

S
ta

g
e

3

S
ta

g
e

4

S
ta

g
e

5

Data Result

Examples of pipeline

• CPU architectures
• Fetch, decode, execute, write back

• Intel Pentium 4 had a 20 stage pipeline

• Unix shell
• i.e. cat datafile | grep “energy” | awk ‘{print $2, $3}’

• Graphics/GPU pipeline

• A generalisation of pipeline (a workflow, or dataflow) is
becoming more and more relevant to large, distributed
scientific workflows

• Can combine the pipeline with other decompositions

Loop parallelism
• Serial programs can often be dominated by

computationally intensive loops.

• Can be applied incrementally, in small steps based upon
a working code
• This makes the decomposition very useful

• Often large restructuring of the code is not required

• Tends to work best with small scale parallelism
• Not suited to all architectures

• Not suited to all loops

• If the runtime is not dominated by loops, or some loops
can not be parallelised then these factors can dominate
(Amdahl’s law.)

Example of loop parallelism:

• If we ignore all parallelisation directives then should just

run in serial

• Technologies have lots of additional support for tuning this

Summary
• There are many considerations when parallelising code

• A variety of patterns exist that can provide well known

approaches to parallelising a serial problem

• You will see examples of some of these during the practical

sessions

Parallel Patterns 19

