
Scalability of Parallel

Programs
How is my parallel code performing?

Outline
• Scalability

• Amdahl’s law

• Gustafson’s law

• Load balance

2

Performance metrics
• Measure the execution time T

• how do we quantify performance improvements?

• Speed up
• typically S(N,P) < P

• Parallel efficiency
• typically E(N,P) < 1

• Serial efficiency
• typically E(N) <= 1

Where N is the size of the problem and P the number of processors

3

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

• Strong Scaling – total problem size stays the same as the number

of processors increases

• Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful and more difficult

to achieve than weak scaling

4

Strong scaling

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

5

Weak scaling

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u

n
ti

m
e

(s
)

No. of processors

6

The serial section of code
“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

7

• A typical program has two categories of components

• Inherently sequential sections: can’t be run in parallel

• Potentially parallel sections

• A fraction, a, is completely serial

• Parallel runtime

• Assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

• For a = 0, S = P as expected (i.e. efficiency = 100%)

• Otherwise, speedup limited by 1/ a for any P

• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9

Amdahl’s law

8

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

Gustafson’s Law

9

Utilising Large Parallel Machines
• Assume parallel part is proportional to N

• serial part is independent of N

• time

• speedup

• Scale problem size with CPUs, i.e. set N = P (weak scaling)

• speedup

• efficiency

10

Gustafson’s Law

• If you can increase the amount of work done by each
process/task then the serial component will not dominate
• Increase the problem size to maintain scaling

• This can be in terms of adding extra complexity or increasing the
overall problem size.

• 𝑆 𝑁 ∗ 𝑃, 𝑃 = 𝑃 − ∝ 𝑃 − 1

• For instance, ∝=0.1
• S(16*N, 16) = 14.5

• S(1024*N, 1024) = 921.7

Due to the scaling of N,
effectively the serial
fraction becomes ∝/P

11

Analogy: Flying London to New York

12

Buckingham Palace to Empire State
• By Jumbo Jet

• distance: 5600 km; speed: 700 kph

• time: 8 hours ?

• No!

• 1 hour by tube to Heathrow + 1 hour for check in etc.

• 1 hour immigration + 1 hour taxi downtown

• fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph

• total journey time = 4 hours + 2 hours 40 mins = 6.7 hours

• speedup of 1.8 not 3.0

• Amdahl’s law!

• a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

13

Flying London to Sydney

14

Buckingham Palace to Sydney Opera

• By Jumbo Jet

• distance: 16800 km; speed: 700 kph; flight time; 24 hours

• serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed

• total time = 4 hours + 8 hours = 12 hours

• speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!

• bigger problems scale better

• increase both distance (i.e. N) and max speed (i.e. P) by three

• maintain same balance: 4 “serial” + 8 “parallel”

15

Load Imbalance
• These laws all assumed all processors equally busy

• what happens if some run out of work?

• Specific case

• four people pack boxes with cans of soup: 1 minute per box

• takes 6 minutes as everyone is waiting for Anna to finish!

• if we gave everyone same number of boxes, would take 3 minutes

• Scalability isn’t everything

• make the best use of the processors at hand before increasing the

number of processors

16

Person Anna Paul David Helen Total

boxes 6 1 3 2 12

Quantifying Load Imbalance

• Define Load Imbalance Factor

𝐿𝐼𝐹 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑎𝑑

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑

• for perfectly balanced problems: LIF = 1.0

• in general, LIF > 1.0

• LIF tells you how much faster calculation could be with balanced load

• Box packing

• LIF = 6/3 = 2

• initial time = 6 minutes; best time = 6/LIF = 3 minutes

17

Summary
• Scaling is important, as the more a code scales the larger

a machine it can take advantage of

• can consider weak and strong scaling

• in practice, overheads limit the scalability of real parallel programs

• Amdahl’s law models these in terms of serial and parallel fractions

• larger problems generally scale better: Gustafson’s law

• Load balance is also a crucial factor

• Metrics exist to give you an indication of how well your

code performs and scales

18

