Scalability of Parallel
Programs

How is my parallel code performing?

EPSRC

Outline
Scalabllity

Amdahl’s law
Gustafson’s law

Load balance

5
qfo 7 s,
~ N
o

o

epcc

Performance metrics

Measure the execution time T
how do we quantify performance improvements?

Speed up
typically S(N,P) < P S(N, P) = Tﬂ(,?_g}

Parallel efficiency
typically E(N,P) < 1

S(N,P) _ T(N])
B(N, P) = = BBy

Serial efficiency B(N) = Teest (V)
typically E(N) <= 1 i T(N.1)

Where N is the size of the problem and P the number of processors

epcc|.

-
Scaling

Scaling is how the performance of a parallel application
changes as the number of processors is increased

There are two different types of scaling:

Strong Scaling — total problem size stays the same as the number
of processors increases

Weak Scaling — the problem size increases at the same rate as the
number of processors, keeping the amount of work per processor
the same

Strong scaling is generally more useful and more difficult
to achieve than weak scaling

epce

Strong scaling

Speed-up vs No of processors
300

—— linear

—=— gctual

0 50 100 150 200 250 300

No of processors

(©)=rcher €0CC

N
Weak scaling

20
18

10 / ——Actual
* —ﬁg_'./:/ = = —|deal

Runtime (s)

1 No. of processors

epce

The serial section of code

“The performance improvement to be gained by parallelisation is limited
by the proportion of the code which is serial”

Gene Amdabhl, 1967

Senal
i
Parallel
1 2 4 8 Processors
1 1.33 1.6 1.8 Speedup

€PCC| |

e
Amdahl’s law

A typical program has two categories of components
Inherently sequential sections: can’t be run in parallel
Potentially parallel sections

A fraction, a, is completely serial

Parallel runtime T(N,P) = oT(N,1) + (l—ﬂ'}g(ﬁil}
Assuming parallel part is 100% efficient
T(N, 1) P

Parallel speedu S(N.P) = =
g P (N, P) T(N,P) aP+(1-a«a)
We are fundamentally limited by the serial fraction
Fora =0, S = P as expected (i.e. efficiency = 100%)
Otherwise, speedup limited by 1/ o for any P
For o = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up

For o. = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9
epCceC

Gustafson’s Law

We need larger problems for larger numbers of CPUs

Parallel
8
1 2 4 8 Processors
1 1.8 3.0 4.5 Speedup

Whilst we are still limited by the serial fraction, it becomes
less important

epcc

<
o) oS
- ~]~
~
o
P

N
Utilising Large Parallel Machines

Assume parallel part is proportional to N

serial part is independent of N

T{EV_, P) = r@erirﬂ(*‘wa P)—i_TI}ﬂ,T‘ﬂ,HEf(*'M? P)

time
_ CHT(L 1) 4 (1—@{;1"(1,1}
T(N,1 +(1—a)N
speedup SN, P) = ﬁ - i+((1—3%

Scale problem size with CPUs, i.e. set N = P (weak scaling)

speedup S(P,P)=a+(1—a)P

efficiency E(P,P)=%+(1—«)

epce

5
qfo N7 e
3
|
o
o

e
Gustafson’s Law

If you can increase the amount of work done by each
process/task then the serial component will not dominate
Increase the problem size to maintain scaling

This can be in terms of adding extra complexity or increasing the
overall problem size.

S(N*P,P) =P —ox (P —1) Due to the scaling of N,
effectively the serial

S(16*N, 16) = 14.5
S(1024*N, 1024) = 921.7

epcc

Analogy: Flying London to New York

Buckingham Palace to Empire State

By Jumbo Jet
distance: 5600 km; speed: 700 kph
time: 8 hours ?

No!
1 hour by tube to Heathrow + 1 hour for check in etc.
1 hour immigration + 1 hour taxi downtown
fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

Triple the flight speed with Concorde to 2100 kph
total journey time =4 hours + 2 hours 40 mins = 6.7 hours
speedup of 1.8 not 3.0

Amdahl’s law!

ax speedup = 3 (i.e. 4 hours
©)=rcher (Seloe

Qf() N
=
==
o
A

Flying London to Sydney

N
Buckingham Palace to Sydney Opera

By Jumbo Jet
distance: 16800 km; speed: 700 kph; flight time; 24 hours
serial overhead stays the same: total time: 4 + 24 = 28 hours

Triple the flight speed
total time = 4 hours + 8 hours = 12 hours
speedup = 2.3 (as opposed to 1.8 for New York)

Gustafson’s law!
bigger problems scale better
increase both distance (i.e. N) and max speed (i.e. P) by three
maintain same balance: 4 “serial” + 8 “parallel”

epcc

e
Load Imbalance

These laws all assumed all processors equally busy
what happens if some run out of work?

Specific case
four people pack boxes with cans of soup: 1 minute per box

boxes 6 1 3 2 12
takes 6 minutes as everyone is waiting for Anna to finish!

If we gave everyone same number of boxes, would take 3 minutes

Scalability isn’t everything
make the best use of the processors at hand before increasing the

number of irocessors ‘ epCC

N
Quantifying Load Imbalance

Define Load Imbalance Factor

maximum load

LIF =
average load

for perfectly balanced problems: LIF = 1.0
In general, LIF > 1.0
LIF tells you how much faster calculation could be with balanced load

Box packing
LIF=6/3=2
Initial time = 6 minutes; best time = 6/LIF = 3 minutes

epcc

sz<» i
=
==
o)
A

Summary

Scaling is important, as the more a code scales the larger
a machine it can take advantage of
can consider weak and strong scaling
In practice, overheads limit the scalability of real parallel programs
Amdahl’s law models these in terms of serial and parallel fractions
larger problems generally scale better: Gustafson’s law

Load balance iIs also a crucial factor

Metrics exist to give you an indication of how well your
code performs and scales

epce

