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Overview 
• Motivation 
•  Types of memory structures 
• Reducing memory accesses 
• Utilizing Caches 
• Write optimisations 
• Prefetching 
• Pointer aliasing 



Motivation 
• Why is memory structure important? 

•  With current hardware memory access has become the most 
significant resource impacting program performance. 
•  Changing memory structures can have a big impact on code 

performance. 
•  Memory structures are frequently global to the program 

•  Different code sections communicate via memory structures. 
•  The programming cost of changing a memory structure can be very 

high. 



Programmer’s perspective: 
• Memory structures are the programmers responsibility 

•  At best the compiler can add small amounts of padding in limited 
circumstances. 

•  Compilers can (and hopefully will) try to make best use of the 
memory structures that you specify (e.g. uni-modular 
transformations) 

• Changing the memory structures you specify may allow 
the compiler to generate better code. 



Types of data structure 
• Arrays 
• Pointer arrays 
•  records/structures 
•  Trees and lists 
• Objects 



Arrays 
• Arrays are large blocks of memory indexed by integer 

index 
• Probably the most common data structure used in HPC 

codes 
• Good for representing regularly discretised versions of 

dense continuous data 
𝑓(𝑥,𝑦,𝑧)→𝐹[𝑖][𝑗][𝑘] 



Arrays 
•  Multi dimensional arrays use multiple indexes (shorthand) 

REAL  A(100,100,100)   REAL A(1000000) 
A (i,j,k) =  7.0     A(i+100*j+10000*k) = 7.0 
 
float  A[100][100][100];   float A[1000000]; 
A [i][j][k] =  7.0    A(k+100*j+10000*i) = 7.0 
 

• Address calculation requires computation but still 
relatively cheap. 

• Compilers have better chance to optimise where 
dimension sizes are known at compile time. 

 



Arrays 
• Many codes loop over array elements 

•  Data access pattern is regular and easy to predict 

• Unless loop nest order and array index order match the 
access pattern may not be optimal for cache re-use. 
•  Compiler can often address these problems by transforming the 

loops. 
•  But sometimes can do a better job when provided with a more 

cache-friendly index order. 



Dynamic sized arrays (Fortran) 
• Not always possible/desirable to fix array sizes at compile 

time  
•  Fortran allows arrays to be dynamically sized based on subroutine 

arguments. 

• Address calculation can still be optimised using CSE. 
• Size of slowest moving index is not needed in address 

computation. 
•  Fortran actually allows this dimension to be unspecified in 

subroutine arguments (assumed size arrays) 



Dynamic sized arrays (C) 
• C requires array dimensions to be known at compile time. 
• However can make slowest dimension variable with 

pointers and typedef 
typedef  float Mat[2][2]; 
Mat *data =(Mat *) malloc(n*sizeof(Mat)); 
for(i=0;i<n;i++){ 
  for(j=0;j<2;j++){ 
    for(k=0;k<2;k++){ 
        data[i][j][k] = 12.0; 
    } 
  } 
}  



Pointer arrays 
•  Alternative to multi-dimensional arrays 

•  Pointer to: array of pointers to: array of pointers to: …. Data 

•  Note reverse index order to previous example! 

float ***data; 
data = (float ***) malloc(2*sizeof(float **)); 
for(i=0;i<2;i++){ 
  data[i]=(float **) malloc(2*sizeof(float *)); 
   for(j=0;j<2;j++){ 
      data[i][j] = (float *) malloc(n*sizeof(float)); 
      for(k=0;k<n;k++){ 
         data[i][j][k] = 12.0; 
      } 
   } 
} 



Pointer arrays II 
•  In C the use-syntax is the same as for arrays 

•  a[I][j][k] = 7.0; 
•  But actually equivalent to 

•  p1 = a[I] 
•  p2= p1[j] 
•  p2[k] = 7.0 

•  Advantage 
•  The “columns” are allocated separately and need not be the same length 

•  Disadvantages 
•  Need multiple memory accesses per element access. 
•  Need more memory to store all the pointers 
•  Less regular access pattern 
•  Messy to create/destroy 



Records/structures 
•  Collection of values (of varying types) 

•  C structs 
•  F90 user defined types 

•  Good for representing multi-valued data or sparse/scattered 
data. 

•  Related variables are stored close together may help cache 
use. 
•  If a code section only uses a subset of the values cache use may 

suffer. 
•  Easy to add/re-order members without breaking code as 

members are referenced by name not position. 
•  much harder to remove them.  



Structures and the compiler 
• Programmer only specifies what a structure contains. 
• Compiler chooses layout within the structure. 
•  In C the compiler usually preserves the order of members 

but inserts padding between members if needed to meet 
alignment constraints 
•  i.e.  Doubles must be aligned on double-word boundaries. 
•  Padding reduces cache-line utilisation so order members to reduce 

padding. 

• Similarly in Fortran but can use SEQUENCE keyword to 
force deterministic layout. 



Objects 
• Usually implemented much the same as structures 
• But objects are opaque  

•  Language restricts access to the internal data. 
•  Usually need to use special access functions. 

• Much easier to change underlying data structure as this is 
only visible to small fraction of the program 

• Access functions introduce additional overhead 
•  Function calls 
•  Memory copies 

• Really only a problem for small low-level objects 



Trees/lists 
• Structures/Objects can contain pointers to other 

structures. 
•  Can construct trees and lists etc. 

• Very flexible and can grow dynamically 
•  Same problems as pointer arrays. 

•  Additional memory accesses to navigate data 
•  Additional storage to store pointers 

•  Access pattern is very hard to predict.  
•  Limited navigation 

•  Can only follow access pattern supported by pointer structure 
•  e.g. cannot jump to middle of a list without traversing half the 

nodes. 



High level data structures 
• Many modern languages have built in-support for high 

level data structures such as 
•  Lists 
•  Trees 
•  Sets 
•  Maps 
•  Etc. 

• May be available either as built-in data-types or as 
standard libraries. 
•  Have the same intrinsic advantages/disadvantages as home made 

equivalents but typically better tested and optimised. 



What can go wrong 
• Poor cache/page use 

•  Lack of spatial locality 
•  Lack of temporal locality 
•  cache thrashing 

• Unnecessary memory accesses 
•  pointer chasing 
•  array temporaries 

• Aliasing problems 
•  Use of pointers can inhibit code optimisation  



Reducing memory accesses 
• Memory accesses are often the most important limiting 

factor for code performance. 
•  Many older codes were written when memory access was relatively 

cheap. 

•  Things to look for: 
•  Unnecessary pointer chasing 

•  pointer arrays that could be simple arrays 
•  linked lists that could be arrays. 

•  Unnecessary temporary arrays. 
•  Tables of values that would be cheap to re-calculate. 



Caches 
• Caches rely on temporal and spatial locality 
• Caches are divided into blocks 
• Blocks are organized at sets 
• A memory location in mapped to a set depending on its 

address 
•  It can occupy any block within that set 

block "
offset 

set"
index 

tag 

Word address 



Utilizing caches 
• Want to avoid cache conflicts 

•  This happens when too much related data maps to the same cache 
set. 

•  Arrays or array dimensions proportional to (cache-size/set-size) 
can cause this. 

•  Rarely a problem with 8- and 16-way associative caches on XC30 
•  Lots of accesses in a loop to arrays with power-of-2 dimensions 

might still be bad  
•  Can pad arrays to avoid this. 



Utilizing caches II 
• Want to use all of the data in a cache line 

•  loading unwanted values is a waste of memory bandwidth. 
•  structures are good for this 
•  Or loop fastest over the corresponding index of an array. 

• Place variables that are used together close together 
•  Also have to worry about alignment with cache block boundaries. 

• Avoid “gaps” in structures 
•  In C structures may contain gaps to ensure the address of each 

variable is aligned with its size.  
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Data 

Instructions 
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Memory Hierarchy 

CPU 

L1 data or 
instruction 

Cache 
KB 

2 cycles 

As you go further up the memory hierarchy, capacity and latency increase 

Registers 
1 KB 

1 cycle 

L2/L3 cache 
MB 

15 cycles 

Memory 
GB 

300 cycles 
Disk 
TB 

10M cycles 



Cache Lines 

CPU 

registers cache 

Typically more than one element at once is transferred 

x = a[0]!

move a[0]...a[n]!
register = a[0]!

fast 
slow 



Bad Cache Alignment 
CrayPAT profiling with export	
  PAT_RT_HWPC=2 (L1 and L2 metrics) 
 
Time%                                       0.2% 
Time                                    0.000003 
Calls                                          1 
PAPI_L1_DCA              455.433M/sec       1367 ops 
DC_L2_REFILL_MOESI        49.641M/sec        149 ops 
DC_SYS_REFILL_MOESI        0.666M/sec          2 ops 
BU_L2_REQ_DC              74.628M/sec        224 req 
User time                  0.000 secs       7804 cycles 
Utilization rate                           97.9% 
L1 Data cache misses      50.308M/sec        151 misses 
LD & ST per D1 miss                         9.05 ops/miss 
D1 cache hit ratio                         89.0% 
LD & ST per D2 miss                       683.50 ops/miss 
D2 cache hit ratio                         99.1% 
L2 cache hit ratio                         98.7% 
Memory to D1 refill        0.666M/sec          2 lines 
Memory to D1 bandwidth    40.669MB/sec       128 bytes 
L2 to Dcache bandwidth  3029.859MB/sec      9536 bytes 

cf: 8 



Good Cache Alignment 
Time%                                       0.1% 
Time                                    0.000002 
Calls                                          1 
PAPI_L1_DCA              689.986M/sec       1333 ops 
DC_L2_REFILL_MOESI        33.645M/sec         65 ops 
DC_SYS_REFILL_MOESI                            0 ops 
BU_L2_REQ_DC              34.163M/sec         66 req 
User time                  0.000 secs       5023 cycles 
Utilization rate                           95.1% 
L1 Data cache misses      33.645M/sec         65 misses 
LD & ST per D1 miss                        20.51 ops/miss 
D1 cache hit ratio                         95.1% 
LD & ST per D2 miss                      1333.00 ops/miss 
D2 cache hit ratio                        100.0% 
L2 cache hit ratio                        100.0% 
Memory to D1 refill                            0 lines 
Memory to D1 bandwidth                         0 bytes 
L2 to Dcache bandwidth  2053.542MB/sec      4160 bytes 



Cache blocking 

• A combination of: 
•  strip mining (also called loop blocking, loop tiling...) 
•  loop interchange 

• Designed to increase data reuse: 
•  temporal reuse: reuse array elements already referenced 
•  spatial reuse: good use of cache lines 

• Many ways to block any given loop nest 
•  Which loops should be blocked? 
•  What block size(s)  will work best? 



• Analysis can reveal which ways are beneficial 
•  How big is your cache?  

•  L1 is 32kB on Ivybridge. 
•  How many cache lines can it hold?  

•  each line typically 64B, so  
•  How many cache lines are needed per loop iteration? 
•  ... 

• But trial-and-error is probably faster 
•  or autotuning of the code 



Loop tiling 

30 

for (i=0;i<n;i++){ 
  for (j=0;j<n;j++){ 
     a[i][j]+=b[i][j]; 
  } 
} 

for (ii=0;ii<n;ii+=B){ 
  for (jj=0;jj<n;jj+=B){ 
    for (i=ii;i<ii+B;i++){ 
      for (j=jj;j<jj+B;j++){ 
         a[i][j]+=b[i][j]; 
      } 
    } 
  } 
} 

j 
i 

j 

i 



Further cache optimisations 

•  If multiple loop nests process a large array 
•  First element of array will be out of cache when second loop nest starts 

•  Improving cache use 
•  Consider fusing the loop nests 

•  Completely: just have one loop nest 
•  Partial: have one outer loop, containing multiple inner loops 

•  Beware that too much fusion can result in lots of temporaries and cause 
the compiler to run out of registers.... 



Original code Complete fusion Partial fusing 
do	
  j	
  =	
  1,	
  Nj	
  
	
  do	
  i	
  =	
  1,	
  Ni	
  
	
  	
  a(i,j)=b(i,j)*2	
  	
  	
  
	
  enddo	
  
enddo	
  
	
  
do	
  j	
  =	
  1,	
  Nj	
  
	
  do	
  i	
  =	
  1,	
  Ni	
  
	
  	
  a(i,j)=a(i,j)+1	
  	
  	
  
	
  enddo	
  
enddo	
  

do	
  j	
  =	
  1,	
  Nj	
  
	
  do	
  i	
  =	
  1,	
  Ni	
  
	
  	
  a(i,j)=b(i,j)*2	
  	
  	
  
	
  	
  a(i,j)=a(i,j)+1	
  	
  	
  
	
  enddo	
  
enddo	
  

do	
  j	
  =	
  1,	
  Nj	
  
	
  do	
  i	
  =	
  1,	
  Ni	
  
	
  	
  a(i,j)=b(i,j)*2	
  	
  	
  
	
  enddo	
  
	
  do	
  i	
  =	
  1,	
  Ni	
  
	
  	
  a(i,j)=a(i,j)+1	
  	
  	
  
	
  enddo	
  
enddo	
  



Further cache optimisations 
•  Perhaps cache block before fusing 

•  Fuse one or more of the outer blocking loops 
•  If multiple subprograms process the array 

•  Remove one or more outer loops (or all loops) from subprograms 
•  Haul loop into parent routine, pass in index values instead 
•  Might want to ensure that compiler is inlining this routine 
•  This technique is very useful if you want to use OpenMP/OpenACC 

•  Beware of Fortran 
•  array syntax often bad 

•  a(:,:)=b(:,:)*2	
  
•  a(:,:)=a(:,:)+1	
  

•  compiler unlikely to fuse any loops 



Original code 
CALL	
  sub1(a,b)	
  
CALL	
  sub2(a)	
  
	
  
SUBROUTINE	
  sub1(a)	
  
	
  do	
  j=1,Nj	
  
	
  	
  do	
  i=1,Ni	
  
	
  	
  	
  a(i,j)=b(i,j)*2	
  	
  	
  
	
  	
  enddo	
  
	
  enddo	
  
END	
  SUBROUTINE	
  sub1	
  

After hauling 
do	
  j	
  =	
  1,	
  Nj	
  
	
  CALL	
  sub1(a,b,j)	
  
	
  CALL	
  sub2(a,j)	
  
enddo	
  
	
  
SUBROUTINE	
  sub1(a,j)	
  
	
  do	
  i=1,Ni	
  
	
  	
  a(i,j)=b(i,j)*2	
  	
  	
  
	
  enddo	
  
END	
  SUBROUTINE	
  sub1	
  



Virtual Memory vs Physical Memory 

•  Translation page table is stored in main memory 
•  Each memory access logically takes twice as long – once to find the 

physical address, once to get the actual data 

• Use a hardware cache of least recently used addresses 
•  Called a Translation Lookaside Buffer or TLB 
•  You should aim to reuse this cache wherever possible 





physical memory 

bad for the TLB 
non unit stride through the data 

= new TLB entry created 

= address already mapped 

physical memory 

VERY bad for the TLB 
strides through the data which exceed the page size 

VM page 



Optimising for TLB 

• Aim to reuse data on a page 
•  i.e. treat similarly to a cache 

• Standard-sized pages are 4kB 
•  But you can use larger "huge" pages 

•  128kB, 512kB, 2MB,... 64MB 
•  Almost always benefit HPC applications 

•  regular data accesses 
•  huge pages give fewer TLB misses 

•  Huge pages can also help communication performance 



• To use huge pages (see man	
  intro_hugepages) 
•  Load chosen craype-­‐hugepages*	
  module 

•  See module	
  avail	
  craype-­‐hugepages for list of available 
options 

•  2M or 8M are usually most successful on Cray XC30 

• Compile as before 
• Make sure this module is also loaded in PBS jobscript 

•  quick cheat: can load a different-sized hugepages module at 
runtime 
•  compile-time module enables hugepages, runtime one determines 

actual size 



Prefetch 
• Some processors (including Ivy Bridge) prefetch 

automatically 
• Regular access patterns are recognized and cache lines 

fetched in advance. 
•  Usually only works for contiguous sequence of cache misses. 

• Processor has a set of stream buffers 
•  Each holds address of an active stream 
•  Loads to the current block causes the next block to be prefetched 

and the stream address to be updated. 
•  Streams are established by series of  cache misses to consecutive 

locations  



Using streams 
•  To utilize stream hardware use linear access patterns 

where possible 
•  Only the order of cache block accesses needs to be linear, not 

each word access. 

• Most loops will require multiple streams 
•  If the loop requires more streams than are supported in hardware 

no prefetching will take place for some of the loads. 
•  Consider splitting the loop. 

• Prefetching typically cannot cross OS page boundaries 
•  huge pages may help 



Pointer aliasing 
• Pointers are variables containing memory addresses. 

•  Pointers are useful but can seriously inhibit code performance. 

• Compilers try very hard to reduce memory accesses. 
•  Only loading data from memory once. 
•  Keep variables in registers and only update memory copy when 

necessary. 

• Pointers could point anywhere, so to be safe compiler will: 
•  Reload all values after write through pointer 
•  Synchronize all variables with memory before read through pointer  



Pointers and Fortran 
•  F77 had no pointers 
• Arguments passed by reference (address) 

•  Subroutine arguments are effectively pointers 
•  But it is illegal Fortran if two arguments overlap 

•  F90/F95 has restricted pointers 
•  Pointers can only point at variables declared as a “target” or at the 

target of another pointer 
•  Compiler therefore knows more about possible aliasing problems 

•  Try to avoid F90 pointers for performance critical data 
structures. 



Pointers and C 
•  In C pointers are unrestricted 

•  Can therefore seriously inhibit performance 
•  Almost impossible to do without pointers 

•  malloc requires the use of pointers. 
•  Pointers used for call by reference. Alternative is call by value where all 

data is copied! 
•  Use the C99 restrict keyword where possible 
•  ...or else use compiler flags 

•  CCE: -h restrict 
•  Intel:  -fnoalias 
•  GNU: ?? 

•  Explicit use of scalar temporaries may also reduce the problem 


