
ARCHER Single Node
Optimisation
Optimising multi-threaded code

Slides contributed by Cray and EPCC

Sources of overhead
•  There are 6 main causes of poor performance in threaded programs:

•  sequential code
•  communication
•  load imbalance
•  synchronisation
•  hardware resource contention
•  compiler (non-)optimisation

•  We will take a look at each and discuss ways to address them
•  Consider the special case of MPI + threads

Sequential code
•  Amount of sequential code will limit performance (Amdahl’s Law)

•  Need to find ways of parallelising it!

•  In OpenMP, all code outside parallel regions, and inside MASTER,
SINGLE and CRITICAL directives is sequential - this code should be
as as small as possible.

Communication
•  On shared memory machines, communication is “disguised” as

increased memory access costs - it takes longer to access data in
main memory or another processors cache than it does from local
cache.

•  Memory accesses are expensive! (~300 cycles for a main memory
access compared to 1-3 cycles for a flop).

•  Communication between processors takes place via the cache
coherency mechanism.

•  Unlike in message-passing, communication is spread throughout
the program. This makes it much harder to analyse or monitor.

Data affinity
• Data will be cached on the processors which are accessing it,

so we must reuse cached data as much as possible.
•  Try to write code with good data affinity - ensure that the same

thread accesses the same subset of program data as much as
possible.

• Also try to make these subsets large, contiguous chunks of
data (avoids false sharing)

• Note: MPI programs have good data affinity by default!

Data affinity (cont)
Example:
!$OMP DO PRIVATE(I)
 do j = 1,n
 do i = 1,n
 a(i,j) = i+j
 end do
 end do
!$OMP DO SCHEDULE(STATIC,16) PRIVATE(I)
 do j = 1,n
 do i = 1,j
 b(j) = b(j) + a(i,j)
 end do
 end do

Different access patterns
for a will result in
additional cache misses

Data affinity (cont)
Example:

!$OMP PARALLEL DO
 do i = 1,n
 ... = a(i)
 end do

 a(:) = 26.0

!$OMP PARALLEL DO
 do i = 1,n
 ... = a(i)
 end do

a will be spread across
multiple caches

Sequential code!
 a will be gathered into
one cache

a will be spread across
multiple caches again

Data affinity (cont.)

• Sequential code will take longer with multiple threads than it
does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional cache
misses

• May need to parallelise code which does not appear to take
much time in the sequential program.

Data affinity: NUMA effects
• On distributed shared memory (cc-NUMA) systems, the

location of data in main memory is important.
•  Note: all current multi-socket x86 systems are cc-NUMA!

• Default policy for the OS is to place data on the processor
which first accesses it (first touch policy).

•  For OpenMP programs this can be the worst possible option
•  data is initialised in the master thread, so it is all allocated one node
•  having all threads accessing data on the same node become a

bottleneck

•  In some OSs, there are options to control data placement
•  e.g. in Linux, can use numactl change policy to round-robin

•  First touch policy can be used to control data placement
indirectly by parallelising data initialisation
•  even though this may not seem worthwhile in view of the insignificant

time it takes in the sequential code
• Don’t have to get the distribution exactly right

•  some distribution is usually much better than none at all.
• Remember that the allocation is done on an OS page basis

•  typically 4KB to 16KB
•  beware of using huge pages!

False sharing
•  Worst cases occur where different threads repeated write neighbouring

array elements
•  Watch out for small chunk sizes in unbalanced loops e.g.:

!$OMP DO SCHEDULE(STATIC,1)
 do j = 1,n
 do i = 1,j
 b(j) = b(j) + a(i,j)
 end do
 end do

may induce false sharing on b.

Load imbalance
•  Note that load imbalance can arise from imbalances in communication as

well as in computation.

•  Experiment with different loop scheduling options - use
SCHEDULE(RUNTIME).

•  If none of these are appropriate, don’t be afraid to use a parallel region and
do your own scheduling (it’s not that hard!). e.g. an irregular block
schedule might be best for some triangular loop nests.

•  For more irregular computations, using tasks can be helpful
•  runtime takes care of the load balancing

Synchronisation
• Barriers can be very expensive (typically 1000s to 10000s of

clock cycles).
• Careful use of NOWAIT clauses.
• Parallelise at the outermost level possible.

•  May require reordering of loops and/or array indices.

• Choice of CRITICAL / ATOMIC / lock routines may have
performance impact.

Hardware resource contention
•  The design of shared memory hardware is often a cost vs.

performance trade-off.
•  There are shared resources which, if all cores try to access

them at the same time, do not scale
•  or, put another way, an application running on a single code can access

more than its fair share of the resources

•  In particular, threads can contend for:
•  memory bandwidth
•  cache capacity
•  functional units (if using SMT)

Memory bandwidth
• Codes which are very bandwidth-hungry will not scale linearly

of most shared-memory hardware
•  Try to reduce bandwidth demands by improving locality, and

hence the re-use of data in caches
•  will benefit the sequential performance as well.

Cache space contention
• On systems where cores share some level of cache, codes

may not appear to scale well because a single core can
access the whole of the shared cache.

• Beware of tuning block sizes for a single thread, and then
running multithreaded code
•  each thread will try to utilise the whole cache

SMT
• When using SMT, threads running on the same core contend

for functional units as well as cache space and memory
bandwidth.

• SMT tends to benefit codes where threads are idle because
they are waiting on memory references
•  code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the
floating point units (e.g. dense linear algebra) may not benefit
from SMT
•  might run slower

SMT on ARCHER
•  Ivy Bridge processors supports 1 or 2 SMT threads

(hyperthreads) per core
• Default is to use 1 hyperthread per core
• Can enable 2 hyperthreads per core with aprun –j 2
• Run 48 processes/threads per node
• Need to take some care with thread placement
• Benefits often do not outweigh the overheads of doubling

the number of MPI processes, or threads
•  especially if you are already running close to the limit of scalability

Compiler (non-)optimisation

• Sometimes the addition of parallel directives can inhibit
the compiler from performing sequential optimisations.

• Symptoms: 1-thread parallel code has longer execution
time and higher instruction count than sequential code.

• Can sometimes be cured by making shared data private,
or local to a routine.

Hybrid MPI + threads
• Many applications use hybrid parallelism for improved

scalability and/or reducing memory usage.

• Usually MPI + OpenMP, sometimes MPI + Posix threads

•  Introduces its own set of single node optimisation
problems

Styles of mixed-mode programming
•  Master-only

•  all MPI communication takes place in the sequential part of the OpenMP
program (no MPI in parallel regions)

•  Funneled
•  all MPI communication takes place through the same (master) thread
•  can be inside parallel regions

•  Serialized
•  only one thread makes MPI calls at any one time
•  distinguish sending/receiving threads via MPI tags or communicators
•  be very careful about race conditions on send/recv buffers etc.

•  Multiple
•  MPI communication simultaneously in more than one thread
•  some MPI implementations don’t support this
•  …and those which do mostly don’t perform well

OpenMP Master-only
!$OMP parallel
 work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

 work…
!$OMP end parallel

#pragma omp parallel

{

 work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

 work…

}

OpenMP Funneled
!$OMP parallel

… work
!$OMP barrier

!$OMP master

 call MPI_Send(…)

!$OMP end master

!$OMP barrier
.. work

!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp barrier

 #pragma omp master

 {

 ierror=MPI_Send(…);

 }

 #pragma omp barrier

 … work

}

OpenMP Serialized
!$OMP parallel
… work

!$OMP critical
 call MPI_Send(…)

!$OMP end critical

… work
!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp critical

 {

 ierror=MPI_Send(…);

 }

 … work

}

OpenMP Multiple
!$OMP parallel
… work

call MPI_Send(…)
… work

!$OMP end parallel

#pragma omp parallel

{

 … work

 ierror=MPI_Send(…);

 … work

}

Pitfalls

•  The OpenMP implementation may introduce additional
overheads not present in the MPI code (e.g. synchronisation,
false sharing, sequential sections).

•  The mixed implementation may require more synchronisation
than a pure OpenMP version, if non-thread-safety of MPI is
assumed.

•  Implicit point-to-point synchronisation may be replaced by
(more expensive) barriers.

•  In the pure MPI code, the intra-node messages
will often be naturally overlapped with inter-node
messages
•  harder to overlap inter-thread communication with inter-node

messages.

• NUMA effects can limit the scalability of OpenMP:
it may be advantageous to run one MPI process
per NUMA domain, rather than one MPI process
per node.
•  process placement becomes very important
•  On ARCHER each socket (12 cores) is a NUMA domain

Master-only
• Advantages

•  simple to write and maintain
•  clear separation between outer (MPI) and inner

(OpenMP) levels of parallelism
•  no concerns about synchronising threads before/after

sending messages

Master-only
• Disadvantages

•  threads other than the master are idle during MPI calls
(sequential code at the threading level)

•  all communicated data passes through the cache where
the master thread is executing.

•  inter-process and inter-thread communication do not
overlap.

•  only way to synchronise threads before and after
message transfers is by parallel regions which have a
relatively high overhead.

•  packing/unpacking of derived datatypes is sequential.

Example

 DO I=1,N
 A(I) = B(I) + C(I)
 END DO

 CALL MPI_BSEND(A(N),1,.....)
 CALL MPI_RECV(A(0),1,.....)

 DO I = 1,N
 D(I) = A(I-1) + A(I)
 END DO

!$omp parallel do

!$omp parallel do

Intra-node messages
overlapped with inter-
node

Inter-thread communication
occurs here

Implicit barrier added here
* nthreads

* nthreads

Funneled
• Advantages

•  relatively simple to write and maintain
•  cheaper ways to synchronise threads before and after message

transfers
•  possible for other threads to compute while master is in an MPI call

• Disadvantages
•  less clear separation between outer (MPI) and inner (OpenMP) levels of

parallelism
•  all communicated data still passes through the cache where the master

thread is executing.
•  inter-process and inter-thread communication still do not overlap.

OpenMP Funneled with overlapping (1)

Can’t using
worksharing here!

OpenMP Funneled with overlapping (2)

Higher overheads and
harder to synchronise
between teams

Serialised
• Advantages

•  easier for other threads to compute while one is in an MPI call
•  can arrange for threads to communicate only their “own” data (i.e. the

data they read and write).

• Disadvantages
•  getting harder to write/maintain
•  more, smaller messages are sent, incurring additional latency

overheads
•  need to use tags or communicators to distinguish between messages

from or to different threads in the same MPI process.

Distinguishing between threads
• By default, a call to MPI_Recv by any thread in an MPI

process will match an incoming message from the sender.
•  To distinguish between messages intended for different

threads, we can use MPI tags
•  if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI
communicators
•  OK for simple patterns, e.g. where thread N in one process only ever

communicates with thread N in other processes
•  more complex patterns also get messy

Multiple
• Advantages

•  Messages from different threads can (in theory) overlap
•  many MPI implementations serialise them internally.

•  Natural for threads to communicate only their “own” data
•  Fewer concerns about synchronising threads (responsibility passed to

the MPI library)

• Disdavantages
•  Hard to write/maintain
•  Not all MPI implementations support this – loss of portability
•  Most MPI implementations don’t perform well like this

•  Thread safety implemented crudely using global locks.

