NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

ARCHER Single Node
Optimisation

Optimising multi-threaded code

Slides contributed by Cray and EPCC

QONIVE,?&
ARESN
(©)archer epcc| @
< JJ,“ (<)
QCOINB‘)<z~

Sources of overhead

There are 6 main causes of poor performance in threaded programs:
sequential code
communication
load imbalance
synchronisation
hardware resource contention
compiler (non-)optimisation

We will take a look at each and discuss ways to address them
Consider the special case of MPI + threads

epcc

Sequential code

Amount of sequential code will limit performance (Amdahl’'s Law)

Need to find ways of parallelising it!

In OpenMP, all code outside parallel regions, and inside MASTER,
SINGLE and CRITICAL directives is sequential - this code should be

as as small as possible.

epce

Communication

On shared memory machines, communication is “disguised” as
Increased memory access costs - it takes longer to access data in
main memory or another processors cache than it does from local

cache.

Memory accesses are expensive! (~300 cycles for a main memory
access compared to 1-3 cycles for a flop).

Communication between processors takes place via the cache
coherency mechanism.

Unlike in message-passing, communication is spread throughout
the program. This makes it much harder to analyse or monitor.

epce

N~y %
M
@)

<

I
Data affinity

Data will be cached on the processors which are accessing it,
so we must reuse cached data as much as possible.

Try to write code with good data affinity - ensure that the same
thread accesses the same subset of program data as much as
possible.

Also try to make these subsets large, contiguous chunks of
data (avoids false sharing)

Note: MPI programs have good data affinity by default!

< S,
2 A
PN
@)
<

epce

&
OTnBY

I
Data affinity (cont)

Example:
1SOMP DO PRIVATE (I)
do j = 1,n

do i = 1,n
a(i,j) = i+j

end do

end do

$SOMP DO SCHEDULE (STATIC,16) PRIVATE (I)

do j = 1,n

doi=1,3
b(j) = b(j) + a(i,]) Different access patterns

end do for a will result in

end do additional cache misses

epce

I
Data affinity (cont)

Example: a will be spread across

multiple caches
1$OMP PARALLEL DO

do i = 1,n

. = a(i)
end do Sequential code!
.| will be gathered into
a(:) = 26.0 one cache
! SOMP PARALLEL DO
do i =1,n
. = a(i)

end do | a will be spread across

multiple caches again

epce

I
Data affinity (cont.)

Sequential code will take longer with multiple threads than it
does on one thread, due to the cache invalidations

Second parallel region will scale badly due to additional cache
misses

May need to parallelise code which does not appear to take
much time in the sequential program.

epcc| @

&
DINBY

I
Data affinity: NUMA effects

On distributed shared memory (cc-NUMA) systems, the
location of data in main memory is important.

Note: all current multi-socket x86 systems are cc-NUMA!

Default policy for the OS is to place data on the processor
which first accesses it (first touch policy).
For OpenMP programs this can be the worst possible option

data is initialised in the master thread, so it is all allocated one node

having all threads accessing data on the same node become a
bottleneck

epcc

In some OSs, there are options to control data placement
e.g. in Linux, can use numactl change policy to round-robin

First touch policy can be used to control data placement
iIndirectly by parallelising data initialisation

even though this may not seem worthwhile in view of the insignificant
time it takes in the sequential code

Don’t have to get the distribution exactly right

some distribution is usually much better than none at all.

Remember that the allocation is done on an OS page basis
typically 4KB to 16KB

beware of using huge pages!

epce

False sharing

Worst cases occur where different threads repeated write neighbouring
array elements

Watch out for small chunk sizes in unbalanced loops e.g.:

1SOMP DO SCHEDULE (STATIC,1)
do j =1,n
do i =1,3
b(j) = b(3) + a(i,3)
end do
end do

may induce false sharing on b.

epce

e
Load imbalance

Note that load imbalance can arise from imbalances in communication as
well as in computation.

Experiment with different loop scheduling options - use
SCHEDULE (RUNTIME).

If none of these are appropriate, don’t be afraid to use a parallel region and
do your own scheduling (it's not that hard!). e.g. an irregular block
schedule might be best for some triangular loop nests.

For more irregular computations, using tasks can be helpful
runtime takes care of the load balancing

epce

Synchronisation

Barriers can be very expensive (typically 1000s to 10000s of
clock cycles).

Careful use of NOWAIT clauses.

Parallelise at the outermost level possible.
May require reordering of loops and/or array indices.

Choice of CRITICAL / ATOMIC / lock routines may have
performance impact.

epce

S
N~y %
M
@)
<

Hardware resource contention

The design of shared memory hardware is often a cost vs.
performance trade-off.

There are shared resources which, if all cores try to access

them at the same time, do not scale

or, put another way, an application running on a single code can access
more than its fair share of the resources

In particular, threads can contend for:
memory bandwidth

cache capacity
functional units (if using SMT)

epcc

I
Memory bandwidth

Codes which are very bandwidth-hungry will not scale linearly
of most shared-memory hardware
Try to reduce bandwidth demands by improving locality, and

hence the re-use of data in caches
will benefit the sequential performance as well.

epce

Cache space contention

On systems where cores share some level of cache, codes
may not appear to scale well because a single core can
access the whole of the shared cache.

Beware of tuning block sizes for a single thread, and then
running multithreaded code
each thread will try to utilise the whole cache

epcc

T
SMT

When using SMT, threads running on the same core contend
for functional units as well as cache space and memory
bandwidth.

SMT tends to benefit codes where threads are idle because
they are waiting on memory references

code with non-contiguous/random memory access patterns

Codes which are bandwidth-hungry, or which saturate the

floating point units (e.g. dense linear algebra) may not benefit
from SMT

might run slower

epcc

T
SMT on ARCHER

lvy Bridge processors supports 1 or 2 SMT threads
(hyperthreads) per core

Default is to use 1 hyperthread per core

Can enable 2 hyperthreads per core with aprun -j 2
Run 48 processes/threads per node

Need to take some care with thread placement

Benefits often do not outweigh the overheads of doubling
the number of MPI processes, or threads
especially if you are already running close to the limit of scalability

epcc| @

&
OrN Y

Compiler (non-)optimisation

Sometimes the addition of parallel directives can inhibit
the compiler from performing sequential optimisations.

Symptoms: 1-thread parallel code has longer execution
time and higher instruction count than sequential code.

Can sometimes be cured by making shared data private,
or local to a routine.

epce

I
Hybrid MPI + threads

Many applications use hybrid parallelism for improved
scalability and/or reducing memory usage.

Usually MPI + OpenMP, sometimes MPI + Posix threads

Introduces its own set of single node optimisation
problems

epcc

S
N~y %
M
@)
<

Styles of mixed-mode programming

Master-only

all MPl communication takes place in the sequential part of the OpenMP
program (no MPI in parallel regions)

Funneled
all MPl communication takes place through the same (master) thread
can be inside parallel regions
Serialized
only one thread makes MPI calls at any one time
distinguish sending/receiving threads via MPI tags or communicators
be very careful about race conditions on send/recv buffers etc.
Multiple
MPI communication simultaneously in more than one thread

some MPI implementations don'’t support this
...and those which do mostly don’t perform well

epce

e
OpenMP Master-only

'SOMP parallel #pragma omp parallel
work... {
'SOMP end parallel work..

}

lerror=MPI Send(..);

call MPI Send(...)
#fpragma omp parallel

{

work...

'SOMP parallel

work...
'SOMP end parallel

epcc

OpenMP Funneled

'SOMP parallel
. work
'SOMP barrier
SOMP master

call MPI Send(..)
'SOMP end master
'SOMP barrier

work
ISOMP end parallel

#fpragma omp parallel
{

. work
#fpragma omp barrier

#fpragma omp master

{

ilerror=MPI Send(..);

}

#fpragma omp barrier

. WOork

epCcc

[
OpenMP Serialized

'SOMP parallel #pragma omp parallel
. work {
I'SOMP critical - work
call MPI Send(..) #pragma omp critical
!SOMP end critical {
work ierror=MPI Send(..);
'SOMP end parallel }
.. work
}

epce

[
OpenMP Multiple

'SOMP parallel #pragma omp parallel
. work {

call MPI Send(..) .. Work

 WOoTrk ierror=MPI Send(..);

SOMP end parallel - WOrK

epcc

T
Pitfalls

The OpenMP implementation may introduce additional
overheads not present in the MPI code (e.g. synchronisation,
false sharing, sequential sections).

The mixed implementation may require more synchronisation
than a pure OpenMP version, if non-thread-safety of MPl is
assumed.

Implicit point-to-point synchronisation may be replaced by
(more expensive) barriers.

epce

In the pure MPI code, the intra-node messages
will often be naturally overlapped with inter-node

mMesSsages

harder to overlap inter-thread communication with inter-node
messages.

NUMA effects can limit the scalability of OpenMP:
it may be advantageous to run one MPI process
per NUMA domain, rather than one MPI process

per node.

process placement becomes very important
On ARCHER each socket (12 cores) is a NUMA domain

epce

Master-only

Advantages
simple to write and maintain

clear separation between outer (MPIl) and inner
(OpenMP) levels of parallelism

no concerns about synchronising threads before/after
sending messages

epce

Master-only

Disadvantages

threads other than the master are idle during MPI calls
(sequential code at the threading level)

all communicated data passes through the cache where
the master thread is executing.

iInter-process and inter-thread communication do not
overlap.

only way to synchronise threads before and after
message transfers is by parallel regions which have a
relatively high overhead.

packing/unpacking of derived datatypes is sequential.

epce

Example

'Somp parallel do

Implicit barrier added here
DO I=1,N * nthreads /
A(I) = B(I) + C(I)
END DO

Intra-node messages

overlapped with inter-
) — node

CALL MPI BSEND(A(N),1,.....
CALL MPI RECV(A(0),1,.....)

'Somp parallel do
DO I =1,N * nthreads « |
D(I) = A(I-1) + A(I)
END DO

epcc

Inter-thread communication
occurs here

Funneled

Advantages
relatively simple to write and maintain

cheaper ways to synchronise threads before and after message
transfers

possible for other threads to compute while master is in an MPI call

Disadvantages

less clear separation between outer (MPI1) and inner (OpenMP) levels of
parallelism

all communicated data still passes through the cache where the master
thread is executing.

inter-process and inter-thread communication still do not overlap.

epce

e
OpenMP Funneled with overlapping (1)

#pragma omp parallel
{

.. work
#pragma omp barrier
if (omp get thread num() == 0) {
ierror=MPI Send(..);
}
else {
do some computation
}
#pragma omp barrier
.. work

Can’t using
worksharing here!

}

epce

e
OpenMP Funneled with overlapping (2)

#pragma omp parallel num threads(2)
{

if (omp get thread num() == 0) {
ierror=MPI Send(..);
} Higher overheads and
else { harder to synchronise

#pragma omp parallel between teams

{

do some computation

}

epce

-
Serialised

Advantages
easier for other threads to compute while one is in an MPI call

can arrange for threads to communicate only their “own” data (i.e. the
data they read and write).

Disadvantages

getting harder to write/maintain

more, smaller messages are sent, incurring additional latency
overheads

need to use tags or communicators to distinguish between messages
from or to different threads in the same MPI process.

epce

I
Distinguishing between threads

By default, a call to MPI_Recv by any thread in an MPI
process will match an incoming message from the sender.
To distinguish between messages intended for different
threads, we can use MPI tags

if tags are already in use for other purposes, this gets messy
Alternatively, different threads can use different MPI

communicators

OK for simple patterns, e.g. where thread N in one process only ever
communicates with thread N in other processes

more complex patterns also get messy

epcc

N
Multiple

Advantages

Messages from different threads can (in theory) overlap
many MPI implementations serialise them internally.

Natural for threads to communicate only their “own” data
Fewer concerns about synchronising threads (responsibility passed to
the MPI library)
Disdavantages
Hard to write/maintain
Not all MPI implementations support this — loss of portability

Most MPI implementations don’t perform well like this
Thread safety implemented crudely using global locks.

epce

