
Using CrayPAT and Apprentice2: A Step-
by-step guide

© Cray Inc. (2014)

Abstract
This tutorial introduces Cray XC30 users to the Cray Performance Analysis Tool and its Graphical User
Interface, Apprentice2. The examples are based on the code supplied in the, however, the techniques
can easily be applied to any application that is compiled and executed on a Cray supercomputer.

Introduction
The Cray Performance Analysis Tool (CrayPAT) is a powerful framework for analysing a parallel application's
performance on Cray supercomputers. It can provide very detailed information on the timing and
performance of individual application procedures, directly incorporating information from the raw
hardware performance counters available on Intel Xeon processors.

Sampling vs. Tracing
CrayPAT has two modes of operation, Sampling and Tracing. Sampling takes regular snapshots of the
application, recording which routine the application was in. This can provide a good overview of the
important routines in an application without interfering with the run time, however it has the potential to
miss smaller functions and cannot provide the more detailed information like MPI messaging statistics or
information from hardware performance counters.

Tracing involves instrumenting each subroutine with additional instructions that can record this extra
information when they enter and exit. This approach ensures full capture of information, but can result in
high overheads, especially where individual functions and subroutines are very small (as is typical in
Objected Oriented languages like C++), it can also generate very large amounts of data which become
difficult to process and visualise.

CrayPAT's Automatic Program Analysis aims to capture the most important performance information
without distorting the results by over instrumentation or generating large volumes of data. APA uses two
steps, the first uses sampling to identify important functions in the application, it then uses this data, along
with information about the size and number of calls to generate a modified binary with tracing included.
This approach aims to cover the vast majority of application runtime with the minimum of overhead and
provides a quick and straightforward method of analysing an application's performance on Cray
supercomputers.

A step-by-step guide to using APA
This step-by-step guide demonstrates how to profile an application using CrayPAT's Automatic Program
Analysis.

First, after logging on to the main system, users should load the perftools module.

module load perftools

The perftools module has to be loaded while all source files are compiled and linked. The VH1 can be built
with a simple call to:

cd src; make

To instrument then the binary, run the pat_build command with the -O apa option. This will generate a new
binary with +pat appended to the end.

cd ../bin
pat_build -O apa vh1-mpi-cray

You should now run the new binary on the backend using the run.pbs script in the run directory. In this
example you should edit the batch script change the name of the executable to vh1-mpi-cray+pat. You
should then submit this executable to run on the Cray backend.

qsub run.pbs

Once this has run, you will see that the run has generated an extra file, vh1-mpi-cray+pat+<number>sdot.xf.
This file contains the raw sampling data from the run and needs to be post processed to
produce useful results. This is done using the pat_report tool which converts all the raw data into a
summarised and readable form.

pat_report vh1-mpi-cray+pat+2681227-198s.xf

This tool can generate a large amount of data, so you may wish to capture the data in an output file, either
using a shell redirect like >, or adding the -o <file> option to the command.

Table 1: Profile by Function

 Samp% | Samp | Imb. | Imb. |Group
 | | Samp | Samp% | Function
 | | | | PE=HIDE

 100.0% | 1663.1 | -- | -- |Total
|--
| 75.1% | 1248.7 | -- | -- |USER
||---
|| 24.5% | 406.9 | 30.1 | 7.2% |parabola_
|| 16.0% | 266.9 | 46.1 | 15.4% |riemann_
|| 8.2% | 136.1 | 12.9 | 9.0% |sweepz_
|| 7.1% | 118.7 | 23.3 | 17.1% |remap_
|| 4.6% | 75.9 | 19.1 | 21.0% |paraset_
|| 4.5% | 74.2 | 13.8 | 16.3% |sweepy_
|| 2.8% | 46.3 | 12.7 | 22.5% |evolve_
|| 2.6% | 43.4 | 11.6 | 22.0% |states_
|| 1.8% | 29.9 | 9.1 | 24.4% |flatten_
|| 1.3% | 21.5 | 9.5 | 31.8% |sweepx1_
|| 1.1% | 18.7 | 8.3 | 32.0% |sweepx2_
||===
| 18.7% | 310.6 | -- | -- |MPI
||---
|| 16.0% | 266.2 | 35.8 | 12.4% |mpi_alltoall
|| 1.2% | 19.6 | 10.4 | 36.2% |MPI_ALLREDUCE
|| 1.0% | 17.0 | 4.0 | 19.9% |mpi_finalize

||===
| 5.5% | 91.8 | -- | -- |ETC
||---
|| 3.3% | 55.4 | 22.6 | 30.2% |__cray_sset_SNB
|| 2.0% | 33.6 | 10.4 | 24.7% |__cray_scopy_SNB
|==

Table 1 - User functions profiled by samples

Table 1 above shows the results from sampling the application. Program functions are separated out into
different types, USER functions are those defined by the application, MPI functions contains the time spent
in MPI library functions, ETC functions are generally library or miscellaneous functions included. ETC
function can include a variety of external functions, from mathematical functions called in by the library (as
is this case) to system calls.

The raw number of samples for each code section is show in the second column and the number as an
absolute percentage of the total samples in the first. The third column is a measure of the imbalance
between individual processors being sampled in this routine and is calculated as the difference between the
average number of samples over all processors and the maximum samples an individual processor was in
this routine.

This report will generate two more files, one with the extension .ap2 which holds the same data as the .xf
but in the post processed form. The other file has a .apa extension and is a text file with a suggested
configuration for generating a traced experiment. You are welcome and encouraged to review this file and
modify its contents in subsequent iterations, however in this first case we will continue with the defaults.

This apa file acts as the input to the pat_build command and is supplied as the argument to the -O flag.

pat_build -O vh1-mpi-cray+pat+2681227-198s.apa

This will produce a third binary with extension +apa. This binary should once again be run on the back end,
so the input run.pbs script should be modified and the name of the executable changed to vh1-mpi-
cray+apa. The script is then submitted to the backend.

qsub run.pbs

Again, a new .xf file will be generated by the application, which should be processed by the pat_report tool.
As this is now a tracing experiment it will provide more information than before

pat_report vh1-mpi-cray+apa+2681298-198t.xf
Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE
 100.0% | 43.070384 | -- | -- | 7373984.5 |Total
|--
| 82.3% | 35.442827 | -- | -- | 7373051.0 |USER
||---
|| 24.8% | 10.688417 | 1.364842 | 11.8% | 460800.0 |remap_
|| 11.6% | 4.985583 | 1.556333 | 24.8% | 4147200.0 |parabola_
|| 11.2% | 4.818683 | 0.540746 | 10.5% | 50.0 |sweepz_
|| 10.6% | 4.571071 | 0.530418 | 10.8% | 100.0 |sweepy_
|| 6.4% | 2.755588 | 0.539899 | 17.1% | 460800.0 |riemann_

|| 5.0% | 2.155727 | 0.265681 | 11.4% | 50.0 |sweepx1_
|| 4.9% | 2.110443 | 0.254360 | 11.2% | 50.0 |sweepx2_
|| 2.3% | 0.982799 | 0.342153 | 26.9% | 921600.0 |paraset_
|| 2.1% | 0.901174 | 0.158770 | 15.6% | 460800.0 |evolve_
|| 1.4% | 0.593570 | 0.170956 | 23.3% | 460800.0 |flatten_
|| 1.3% | 0.576879 | 0.174349 | 24.2% | 460800.0 |states_
||===
| 14.6% | 6.288273 | -- | -- | 361.2 |MPI_SYNC
||---
|| 11.6% | 5.002999 | 4.661168 | 93.2% | 300.0 |mpi_alltoall_(sync)
|| 2.9% | 1.260776 | 1.258619 | 99.8% | 51.0 |mpi_allreduce_(sync)
||===
| 3.1% | 1.339015 | -- | -- | 371.3 |MPI
||---
| 2.6% | 1.101674 | 0.059202 | 5.3% | 300.0 | mpi_alltoall
|==

Table 2 – User functions profiled using tracing

The updated table above (Table 2) is the version generated from tracing data instead of the previous
sampling data table (Table 1). This version makes true timing information is available (averages per
processor) and the number of times each function is called. Table 3 shows the information available for
individual functions. Timings are more accurate and features like the number of calls are available.
Information from the Opteron's hardware performance counters is also available, specifically in this case
details relating to the
number of floating point operations, cache references and TLB buffer. There are a large number of
performance counters available from the Opteron however only 4 may be run concurrently.

==
 USER / remap_
--
 Time% 24.8%
 Time 10.688417 secs
 Imb. Time 1.364842 secs
 Imb. Time% 11.8%
 Calls 0.039M/sec 460800.0 calls
 PERF_COUNT_HW_CACHE_L1D:ACCESS 16640767864
 PERF_COUNT_HW_CACHE_L1D:PREFETCH 1090541046
 PERF_COUNT_HW_CACHE_L1D:MISS 3868292423
 CPU_CLK_UNHALTED:THREAD_P 89548181241
 CPU_CLK_UNHALTED:REF_P 3067017219
 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 11536258
 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 23360841
 L2_RQSTS:ALL_DEMAND_DATA_RD 2466573233
 L2_RQSTS:DEMAND_DATA_RD_HIT 2247462515
 User time (approx) 11.683 secs 31555692812 cycles 100.0% Time
 CPU_CLK 2.920GHz
 TLB utilization 618.95 refs/miss 1.209 avg uses
 D1 cache hit,miss ratios 82.1% hits 17.9% misses
 D1 cache utilization (misses) 5.58 refs/miss 0.698 avg hits
 D2 cache hit,miss ratio 94.3% hits 5.7% misses
 D1+D2 cache hit,miss ratio 99.0% hits 1.0% misses
 D1+D2 cache utilization 98.58 refs/miss 12.322 avg hits
 D2 to D1 bandwidth 12886.083MB/sec 157860686896 bytes
 Average Time per Call 0.000023 secs
 CrayPat Overhead : Time 10.7%

Table 3 – Per function hardware performance counter information

Additional document ion is available for CrayPAT and can be access either through the man pages for
individual commands or through the interactive CrayPAT command (requires perftools to be loaded):

pat_help

Or though man pages:

man intro_pat

man pat_build

man pat_report

Apprentice2

Apprentice2 is the Graphic User Interface and visualisation suite for CrayPAT's performance data. It reads
the .ap2 files generated by pat_report's processing of .xf files. It is launched from the command line with:

app2 <file>.ap2

Figure [app2:calltree] shows a screen shot of the call tree information available from CrayPAT. It shows how
time is spent along the call tree, inclusive time corresponds to the width of boxes, excluding time to the
height. Yellow represents the load imbalance time between processors. Extra information is provided
by holding the mouse over areas of the screen, the “?” box will provide hints on how to interpret the
information displayed.

Accessing Temporal Information

Tracing an application can potentially generate very large amounts of data, to reduce this volume the
CrayPAT will, by default, summarise the data over the entire application run. To see more detailed
information about the timing of individual events (like the sequencing of MPI messages between processors
or the number of hardware counter events in a time interval) CrayPAT has to be instructed to store all data
from throughout the run. This is controlled by the PAT_RT_SUMMARY environment variable, setting it to 0
in batch.pbs will prevent summarising and allow access to even more data.

export PAT_RT_SUMMARY=0

Warning! Running tracing experiment on a large number of processors for a long period of time will
generate VERY large files! Most tracing experiments should be conducted on a small number of processors
(<= 256) and over a short wall clock time period (< 5 minute).

