
ARCHER Single Node
Optimisation
Optimising with the compiler

Slides contributed by Cray and EPCC

Overview
•  Introduction
•  Optimisation techniques

•  compiler flags
•  compiler hints
•  code modifications

•  Optimisation topics
•  locals and globals
•  conditionals
•  data types
•  CSE
•  register use and spilling
•  loop unrolling/pipelining
•  inlining

Introduction
• Unless we write assembly code, we are always using a

compiler.
• Modern compilers are (quite) good at optimisation

•  memory optimisations are an exception
• Usually much better to get the compiler to do the

optimisation.
•  avoids machine-specific coding
•  compilers break codes much less often than humans

• Even modifying code can be thought of as “helping the
compiler”.

Compiler flags
•  Typical compiler has hundreds of flags/options.

•  most are never used
•  many are not related to optimisation

• Most compilers have flags for different levels of general
optimisation.
•  -O1, -O2, -O3,....

• When first porting code, switch optimisation off.
•  only when you are satisfied that the code works, turn optimisation

on, and test again.
•  but don’t forget to use them!
•  also don’t forget to turn off debugging, bounds checking and

profiling flags...

Compiler flags (cont.)
• Note that highest levels of optimisation may

•  break your code.
•  give different answers, by bending standards.
•  make your code go slower.

• Always read documentation carefully.

•  Isolate routines and flags which cause the problem.
•  binary chop
•  one routine per file may help

Compiler flags (cont.)
• Many compilers are designed for an instruction set

architecture, not one machine.
•  flags to target ISA versions, processor versions, cache

configurations
•  defaults may not be optimal, especially if cross-compiling

• Some optimisation flags may not be part of -On
•  check documentation
•  use sparingly (may only be beneficial in some cases)

Compiler hints
• A mechanism for giving additional information to the

compiler, e.g.
•  values of variables (e.g. loop trip counts)
•  independence of loop iterations
•  independence of index array elements
•  aliasing properties

• Appear as comments (Fortran), or preprocessor pragmas
(C)
•  don’t affect portability

Incremental compilation
•  Compilers can only work with the limited information available

to them.
•  Most compilers compile code in an incremental fashion

•  Each source file is compiled independently of each other.
•  Most compilers ignore all source files other than those specified on the

command line (or implicitly referenced via search paths, e.g. include files)
•  Routines from other source files treated as “black-boxes”

•  Make worst case assumptions based on routine prototype.
•  You can help by providing more information

•  Information in routine prototypes
•  INTENT, PURE, const, etc.

•  Compiler hints
•  Command line flags

Code modification
•  When flags and hints don’t solve the problem, we will have to

resort to code modification.

•  Be aware that this may
•  introduce bugs.
•  make the code harder to read/maintain.
•  only be effective on certain architectures and compiler versions.

•  Try to think about
•  what optimisation the compiler is failing to do
•  what additional information can be provided to compiler
•  how can rewriting help

• How can we work out what the compiler has done?
•  eyeball assembly code
•  use diagnostics flags

•  Increasingly difficult to work out what actually occurred in
the processor.
•  superscalar, out-of-order, speculative execution

• Can estimate expected performance
•  count flops, load/stores, estimate cache misses
•  compare actual performance with expectations

Locals and globals
• Compiler analysis is more effective with local variables
• Has to make worst case assumptions about global

variables
• Globals could be modified by any called procedure (or by

another thread).
• Use local variables where possible
• Automatic variables are stack allocated: allocation is

essentially free.
•  In C, use file scope globals in preference to externals

Conditionals
• Even with sophisticated branch prediction hardware,

branches are bad for performance.
•  Try to avoid branches in innermost loops.

•  if you can’t eliminate them, at least try to get them out of the critical
loops.

do i=1,k
 if (n .eq. 0) then
 a(i) = b(i) + c
 else
 a(i) = 0.
 endif
end do

if (n .eq. 0) then
 do i=1,k
 a(i) = b(i) + c
 end do
else
 do i=1,k
 a(i) = 0.
 end do
endif

• A little harder for the compiler.....

do i=1,k
 if (i .le. j) then
 a(i) = b(i) + c
 else
 a(i) = 0.
 endif
end do

do i=1,j
 a(i) = b(i) + c
end do
do i = j+1,k
 a(i) = 0.
end do

Data types
• Performance can be affected by choice of data types

•  often a difference between 32-bit and 64-bit arithmetic (integer and
floating point).

•  complicated by trade-offs with memory usage and cache hit rates

• Avoid unnecessary type conversions
•  e.g. int to long, float to double
•  N.B. some type conversions are implicit
•  However sometimes better than the alternative e.g.

•  Use DP reduction variable rather than increase array precision.

CSE
• Compilers are generally good at Common Subexpression

Elimination.
• A couple of cases where they might have trouble:

Different order of operands

Function calls

d = a + c
e = a + b + c

d = a + func(c)
e = b + func(c)

CSE including function calls.
•  To extract a CSE containing a function call the compiler

has to be sure of various things:
•  The function always returns the same value for the same input.
•  The function does not cause any side effects that would be effected

by changing the number of times the function is called:
•  Modifying its inputs.
•  Changing global data.

• Need to be very careful with function prototypes to allow
compiler to know this.

Register use
• Most compilers make a reasonable job of register
allocation.
• But only limited number available.

• Can have problems in some cases:
•  loops with large numbers of temporary variables
•  such loops may be produced by inlining or unrolling
•  array elements with complex index expressions
•  can help compiler by introducing explicit scalar temporaries,

most compilers will use a register for an explicit scalar in
preference to an implicit CSE.

for (i=0;i<n;i++){
 b[i] += a[c[i]];
 c[i+1] = 2*i;
}

tmp = c[0];
for (i=0;i<n;i++){
 b[i] += a[tmp];
 tmp = 2*i;
 c[i+1] = tmp;
}

Spilling
•  If compiler runs out of registers it will generate spill code.

•  store a value and then reload it later on

• Examine your source code and count how many loads/
stores are required

• Compare with assembly code

• May need to distribute loops

Loop unrolling
•  Loop unrolling and software pipelining are two of the most

important optimisations for scientific codes on modern
RISC processors.

• Compilers generally good at this.

•  If compiler fails, usually better to try and remove the
impediment, rather than unroll by hand.
•  cleaner, more portable, better performance

• Compiler has to determine independence of iterations

Loop unrolling
•  Loops with small bodies generate small basic blocks of

assembly code
•  lot of dependencies between instructions
•  high branch frequency
•  little scope for good instruction scheduling

•  Loop unrolling is a technique for increasing the size of the
loop body
•  gives more scope for better schedules
•  reduces branch frequency
•  make more independent instructions available for multiple issue.

21

Loop unrolling
• Replace loop body by multiple copies of the body
• Modify loop control

•  take care of arbitrary loop bounds

• Number of copies is called unroll factor
Example:

22

do i=1,n
 a(i)=b(i)+d*c(i)
end do

do i=1,n-3,4
 a(i)=b(i)+d*c(i)
 a(i+1)=b(i+1)+d*c(i+1)
 a(i+2)=b(i+2)+d*c(i+2)
 a(i+3)=b(i+3)+d*c(i+3)
end do
do j = i,n
 a(j)=b(j)+d*c(j)
end do

• Remember that this is in fact done by the compiler at the
IR or assembly code level.

•  If the loop iterations are independent, then we end up with
a larger basic block with relatively few dependencies, and
more scope for scheduling.
•  also reduce no. of compare and branch instructions

• Choice of unroll factor is important (usually 2,4,8)
•  if factor is too large, can run out of registers

• Cannot unroll loops with complex flow control
•  hard to generate code to jump out of the unrolled version at the

right place

23

Outer loop unrolling
•  If we have a loop nest, then it is possible to unroll one of

the outer loops instead of the innermost one.
• Can improve locality.

24

do i=1,n,4
 do j=1,m
 a(i,j)=c*d(j)
 a(i+1,j)=c*d(j)
 a(i+2,j)=c*d(j)
 a(i+3,j)=c*d(j)
 end do
end do

do i=1,n
 do j=1,m
 a(i,j)=c*d(j)
 end do
end do

2 loads for 1 flop 5 loads for 4 flops

Variable expansion

• Variable expansion can help break dependencies in
unrolled loops
•  improves scheduling opportunities

• Close connection to reduction variables in parallel loops

25

for (i=0,i<n,i+=2){
 b1+=a[i];
 b2+=a[i+1];
}
b=b1+b2;

for (i=0,i<n,i+=2){
 b+=a[i];
 b+=a[i+1];
}

for (i=0,i<n,i++){
 b+=a[i];
}

unroll"

expand b"

Register renaming
• Registers may be reused within a basic block introducing

unnecessary dependencies.
• Using two (or more) different registers can preserve

program correctness, but allow more scheduling flexibility
•  Some CPUs perform register rename and reschedule in hardware,

this can utilise additional registers not visible to compiler.

27

add %f2,1,%f1
st [%o1],f1
add %f3,2,%f1
st [%o2],f1

add %f2,1,%f1
st [%o1],f1
add %f3,2,%f27
st [%o2],f27

add %f2,1,%f1
add %f3,2,%f27
st [%o1],f1
st [%o2],f27

rename" reschedule"

Software pipelining
• Problem with scheduling small loop bodies is that there

are dependencies between instructions in the basic block.

• Potentially possible to start executing instructions from the
next iteration before current one is finished.

•  Idea of software pipelining is to construct a basic block
that contains instructions from different loop iterations.
•  fewer dependencies between instructions in block
•  needs additional code at start and end of loop

28

Software pipelining

29

for (i=0;i<n;i++){
 t1 = a(i); //L i
 t2 = b + t1; //A i
 a(i) = t2; //S i
}

for (i=0;i<n;i++){
 a(i) += b;
}

//prologue
t1 = a(0); //L 0
t2 = b + t1; //A 0
t1 = a(1); //L 1

for (i=0;i<n-2;i++){
 a(i) = t2; //S i
 t2 = b + t1; //A i+1
 t1 = a(i+2); //L i+2
}

//epilogue
a(n-2) = t2; //S n-2
t2 = b + t1; //A n-1
a(n-1) = t2; //S n-1

At instruction level

30

L: ld [%r1],%f0
 fadd f0,f1,f2
 st [%r1],f2
 add %r1,4,%r1
 cmp %r1,%r3
 bg L
 nop

 ld [%r1],%f0
 fadd f0,f1,f2
 ld [%r1+4],%f0

L: st [%r1],f2
 fadd f0,f1,f2
 ld [%r1+8],%f0
 cmp %r1,%r3-8
 bg L
 add %r1,4,%r1

 st [%r1],f2
 add %r1,4,%r1
 fadd f0,f1,f2
 st [%r1],f2

st must wait for fadd
to complete: pipeline stall
for data hazard

Impediments to unrolling
•  Function calls

•  except in presence of good interprocedural analysis and inlining

• Conditionals
•  especially control transfer out of the loop
•  lose most of the benefit anyway as they break up the basic block.

• Pointer/array aliasing
•  compiler can’t be sure different values don’t overlap in memory

Example

• Compiler doesn’t know that a[indx[i]] and a[ip] don’t
overlap

• Could try hints
•  tell compiler that indx is a permutation
•  tell compiler that it is OK to unroll

• Or could rewrite:

for (i=0;i<ip;i++){
 a[indx[i]] += c[i] * a[ip];
}

tmp = a[ip];
for (i=0;i<ip;i++){
 a[indx[i]] += c[i] * tmp;
}

Inlining
•  Compilers very variable in their abilities

•  Hand inlining possible
•  very ugly (slightly less so if done via pre-processor macros)
•  causes code replication

•  Compiler has to know where the source of candidate routines is.
•  sometimes done by compiler flags
•  easier for routines in the same file
•  try compiling multiple files at the same time

•  Very important for OO code
•  OO design encourages methods with very small bodies
•  inline keyword in C++ can be used as a hint

Multiple Optimisation steps
• Sometimes multiple optimisation steps are required.

•  Multiple levels of in-lining.
•  In-lining followed by loop un-rolling followed by CSE.

•  The compiler may not be able to perform all steps at the
same time
•  You may be able to help the compiler by performing some of the

steps by hand.
•  Look for the least damaging code change that allows the compiler

to complete the rest of the necessary changes.
•  Ideally try each step in isolation before attempting to combine

hand-optimisations.

General Cray Compiler Flags
•  Optimisation Options

•  -O2 optimal flags [enabled by default]
•  -O3 aggressive optimization
•  -O ipaN (ftn) or -hipaN (cc/CC) inlining, N=0-5 [default N=3]

•  Create listing files with optimization info
•  -ra (ftn) or -hlist=a (cc/CC) creates a listing file with all

 optimization info
•  -rm (ftn) or -hlist=m (cc/CC) produces a source listing with

 loopmark information
•  Parallelization Options

•  -O omp (ftn) or -h omp (cc/CC) Recognize OpenMP directives
 [default]

•  -O threadN (ftn) or control the compilation and -
h threadN (cc/CC) optimization of OpenMP directives,

 N=0-3 [default N=2]
è More info: man crayftn, man craycc, man crayCC

Recommended CCE Compilation Options
•  Use default optimization levels

•  It’s the equivalent of most other compilers -O3 or -fast
•  It is also our most thoroughly tested configuration

•  Use -O3,fp3 (or -O3 -hfp3, or some variation) if the application runs
cleanly with these options
•  -O3 only gives you slightly more than the default -O2
•  Cray also test this thoroughly
•  -hfp3 gives you a lot more floating point optimization (default is -hfp2)

•  If an application is intolerant of floating point reordering, try a lower -
hfp number
•  Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the maximum)
•  Might be needed for tests that require strict IEEE conformance
•  Or applications that have ‘validated’ results from a different compiler

•  Do not use too aggressive optimizations , e.g. -hfp4
•  Higher numbers are not always correlated with better performance

OpenMP
•  OpenMP is ON by default

•  This is the opposite default behavior that you get from GNU and Intel
compilers

•  Optimizations controlled by -OthreadN (ftn) or -hthreadN (cc/CC),
N=0-3 [default N=2]

•  To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp

•  Autothreading is NOT on by default
•  -hautothread to turn on
•  Interacts with OpenMP directives

•  If you do not want to use OpenMP and have OMP directives in
the code, make sure to shut off OpenMP at compile time

CCE – GNU – Intel compilers
•  More or less all optimizations and features provided by CCE are available in

Intel and GNU compilers

•  GNU compiler serves a wide range of users & needs
•  Default compiler with Linux, some people only test with GNU
•  GNU defaults are conservative (e.g. -O1)

•  -O3 includes vectorization and most inlining
•  Performance users set additional options

•  Intel compiler is typically more aggressive in the optimizations
•  Intel defaults are more aggressive (e.g -O2), to give better performance “out-of-the-box”

•  Includes vectorization; some loop transformations such as unrolling; inlining within source file
•  Options to scale back optimizations for better floating-point reproducibility, easier debugging, etc.
•  Additional options for optimizations less sure to benefit all applications

•  CCE is even more aggressive in the optimizations by default
•  Better inlining and vectorization
•  Aggressive floating-point optimizations
•  OpenMP enabled by default

•  GNU users probably have to specify higher optimisation levels

Cray, Intel and GNU compiler flags
Feature Cray Intel GNU
Listing -hlist=a -opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1 and
above

By default at -O2 and
above

By default at -O3 or using
-ftree-vectorize

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -fp-model [fast|fast=2|
precise| except|strict]

-f[no-]fast-math or
-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize
-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx
-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64
-s integer64

-real-size 64
-integer-size 64

-freal-4-real-8
-finteger-4-integer-8

Summary

• Remember compiler is always there.

•  Try to help compiler, rather than do its job for it.

• Use flags and hints as much as possible

• Minimise code modifications

