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Overview 
•  Introduction 
•  Optimisation techniques 

•  compiler flags 
•  compiler hints 
•  code modifications 

•  Optimisation topics 
•  locals and globals 
•  conditionals 
•  data types 
•  CSE 
•  register use and spilling 
•  loop unrolling/pipelining 
•  inlining 



Introduction 
• Unless we write assembly code, we are always using a 

compiler. 
• Modern compilers are (quite) good at optimisation 

•  memory optimisations are an exception 
• Usually much better to get the compiler to do the 

optimisation. 
•  avoids machine-specific coding 
•  compilers break codes much less often than humans 

• Even modifying code can be thought of as “helping the 
compiler”. 



Compiler flags 
•  Typical compiler has hundreds of flags/options. 

•  most are never used 
•  many are not related to optimisation 

• Most compilers have flags for different levels of general 
optimisation. 
•  -O1, -O2, -O3,.... 

• When first porting code, switch optimisation off. 
•  only when you are satisfied that the code works, turn optimisation 

on, and test again. 
•  but don’t forget to use them! 
•  also don’t forget to turn off debugging, bounds checking and 

profiling flags...  



Compiler flags (cont.) 
• Note that highest levels of optimisation may 

•  break your code. 
•  give different answers, by bending standards. 
•  make your code go slower. 

• Always read documentation carefully. 

•  Isolate routines and flags which cause the problem. 
•  binary chop 
•  one routine per file may help 



Compiler flags (cont.) 
• Many compilers are designed for an instruction set 

architecture, not one machine. 
•  flags to target ISA versions, processor versions, cache 

configurations 
•  defaults may not be optimal, especially if cross-compiling 

• Some optimisation flags may not be part of -On 
•  check documentation 
•  use sparingly (may only be beneficial in some cases) 



Compiler hints 
• A mechanism for giving additional information to the 

compiler, e.g. 
•  values of variables (e.g. loop trip counts) 
•  independence of loop iterations 
•  independence of index array elements 
•  aliasing properties 

• Appear as comments (Fortran), or preprocessor pragmas 
(C) 
•  don’t affect portability   



Incremental compilation 
•  Compilers can only work with the limited information available 

to them.  
•  Most compilers compile code in an incremental fashion 

•  Each source file is compiled independently of each other. 
•  Most compilers ignore all source files other than those specified on the 

command line (or implicitly referenced via search paths, e.g. include files) 
•  Routines from other source files treated as “black-boxes” 

•  Make worst case assumptions based on routine prototype. 
•  You can help by providing more information 

•  Information in routine prototypes 
•  INTENT, PURE, const, etc. 

•  Compiler hints 
•  Command line flags  



Code modification 
•  When flags and hints don’t solve the problem, we will have to 

resort to code modification.  

•  Be aware that this may 
•  introduce bugs. 
•  make the code harder to read/maintain. 
•  only be effective on certain architectures and compiler versions. 

•  Try to think about 
•  what optimisation the compiler is failing to do 
•  what additional information can be provided to compiler 
•  how can rewriting help 



• How can we work out what the compiler has done?  
•  eyeball assembly code  
•  use diagnostics flags 

•  Increasingly difficult to work out what actually occurred in 
the processor. 
•  superscalar, out-of-order, speculative execution 

• Can estimate expected performance 
•  count flops, load/stores, estimate cache misses 
•  compare actual performance with expectations 



Locals and globals 
• Compiler analysis is more effective with local variables 
• Has to make worst case assumptions about global 

variables 
• Globals could be modified by any called procedure (or by 

another thread). 
• Use local variables where possible 
• Automatic variables are stack allocated: allocation is 

essentially free. 
•  In C, use file scope globals in preference to externals 



Conditionals 
• Even with sophisticated branch prediction hardware, 

branches are bad for performance. 
•  Try to avoid branches in innermost loops. 

•  if you can’t eliminate them, at least try to get them out of the critical 
loops. 

do i=1,k 
  if (n .eq. 0) then 
     a(i) = b(i) + c 
  else 
    a(i) = 0. 
  endif 
end do  

if (n .eq. 0) then 
  do i=1,k 
    a(i) = b(i) + c 
  end do 
else 
  do i=1,k 
    a(i) = 0. 
  end do 
endif 



• A little harder for the compiler..... 

do i=1,k 
  if (i .le. j) then 
    a(i) = b(i) + c 
  else 
    a(i) = 0. 
  endif 
end do  

do i=1,j 
    a(i) = b(i) + c 
end do  
do i = j+1,k 
    a(i) = 0. 
end do  



Data types 
• Performance can be affected by choice of data types 

•  often a difference between 32-bit and 64-bit arithmetic (integer and 
floating point). 

•  complicated by trade-offs with memory usage and cache hit rates 

• Avoid unnecessary type conversions 
•  e.g. int to long, float to double 
•  N.B. some type conversions are implicit 
•  However sometimes better than the alternative e.g. 

•  Use DP reduction variable rather than increase array precision. 



CSE 
• Compilers are generally good at Common Subexpression 

Elimination. 
• A couple of cases where they might have trouble: 
 
Different order of operands 
 
 
Function calls 

d = a + c 
e = a + b + c 

d = a + func(c) 
e = b + func(c) 



CSE including function calls. 
•  To extract a CSE containing a function call the compiler 

has to be sure of various things: 
•  The function always returns the same value for the same input. 
•  The function does not cause any side effects that would be effected 

by changing the number of times the function is called: 
•  Modifying its inputs. 
•  Changing global data. 

• Need to be very careful with function prototypes to allow 
compiler to know this. 



Register use 
• Most compilers make a reasonable job of register 
allocation. 
• But only limited number available. 

• Can have problems in some cases: 
•  loops with large numbers of temporary variables 
•  such loops may be produced by inlining or unrolling 
•  array elements with complex index expressions 
•  can help compiler by introducing explicit scalar temporaries, 

most compilers will use a register for an explicit scalar in 
preference to an implicit CSE. 



for (i=0;i<n;i++){ 
   b[i] += a[c[i]];  
   c[i+1] = 2*i;  
} 

tmp = c[0]; 
for (i=0;i<n;i++){ 
   b[i] += a[tmp]; 
   tmp = 2*i;  
   c[i+1] = tmp;  
} 



Spilling 
•  If compiler runs out of registers it will generate spill code. 

•  store a value and then reload it later on 

• Examine your source code and count how many loads/
stores are required 

• Compare with assembly code 

• May need to distribute loops 



Loop unrolling 
•  Loop unrolling and software pipelining are two of the most 

important optimisations for scientific codes on modern 
RISC processors.  

• Compilers generally good at this.  

•  If compiler fails, usually better to try and remove the 
impediment, rather than unroll by hand.  
•  cleaner, more portable, better performance 

• Compiler has to determine independence of iterations 



Loop unrolling 
•  Loops with small bodies generate small basic blocks of 

assembly code 
•  lot of dependencies between instructions 
•  high branch frequency 
•  little scope for good instruction scheduling 

•  Loop unrolling is a technique for increasing the size of the 
loop body 
•  gives more scope for better schedules 
•  reduces branch frequency 
•  make more independent instructions available for multiple issue. 

21 



Loop unrolling 
• Replace loop body by multiple copies of the body 
• Modify loop control 

•  take care of arbitrary loop bounds 

• Number of copies is called unroll factor 
Example: 

22 

do i=1,n 
   a(i)=b(i)+d*c(i) 
end do 

do i=1,n-3,4 
  a(i)=b(i)+d*c(i) 
  a(i+1)=b(i+1)+d*c(i+1) 
  a(i+2)=b(i+2)+d*c(i+2) 
  a(i+3)=b(i+3)+d*c(i+3) 
end do 
do j = i,n 
  a(j)=b(j)+d*c(j) 
end do 



• Remember that this is in fact done by the compiler at the 
IR or assembly code level. 

•  If the loop iterations are independent, then we end up with 
a larger basic block with relatively few dependencies, and 
more scope for scheduling. 
•  also reduce no. of compare and branch instructions 

• Choice of unroll factor is important (usually 2,4,8) 
•  if factor is too large, can run out of registers 

• Cannot unroll loops with complex flow control  
•  hard to generate code to jump out of the unrolled version at the 

right place   

23 



Outer loop unrolling 
•  If we have a loop nest, then it is possible to unroll one of 

the outer loops instead of the innermost one.  
• Can improve locality. 
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do i=1,n,4 
  do j=1,m 
    a(i,j)=c*d(j)  
    a(i+1,j)=c*d(j)  
    a(i+2,j)=c*d(j)  
    a(i+3,j)=c*d(j) 
  end do  
end do 

do i=1,n 
  do j=1,m 
    a(i,j)=c*d(j) 
  end do  
end do 

2 loads for 1 flop 5 loads for 4 flops 



Variable expansion 

• Variable expansion can help break dependencies in 
unrolled loops 
•  improves scheduling opportunities 

• Close connection to reduction variables in parallel loops 

25 



for (i=0,i<n,i+=2){ 
   b1+=a[i]; 
   b2+=a[i+1]; 
} 
b=b1+b2; 

for (i=0,i<n,i+=2){ 
   b+=a[i]; 
   b+=a[i+1]; 
} 

for (i=0,i<n,i++){ 
   b+=a[i]; 
} 

unroll"

expand b"



Register renaming 
• Registers may be reused within a basic block introducing 

unnecessary dependencies. 
• Using two (or more) different registers can preserve 

program correctness, but allow more scheduling flexibility 
•  Some CPUs perform register rename and reschedule in hardware, 

this can utilise additional registers not visible to compiler. 

27 

add %f2,1,%f1 
st [%o1],f1 
add %f3,2,%f1 
st [%o2],f1 

add %f2,1,%f1 
st [%o1],f1 
add %f3,2,%f27 
st [%o2],f27 

add %f2,1,%f1 
add %f3,2,%f27 
st [%o1],f1 
st [%o2],f27 

rename" reschedule"



Software pipelining 
• Problem with scheduling small loop bodies is that there 

are dependencies between instructions in the basic block. 

• Potentially possible to start executing instructions from the 
next iteration before current one is finished.  

•  Idea of software pipelining is to construct a basic block 
that contains instructions from different loop iterations. 
•  fewer dependencies between instructions in block 
•  needs additional code at start and end of loop 

28 



Software pipelining 
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for (i=0;i<n;i++){ 
   t1  = a(i);    //L i 
   t2  = b + t1;  //A i 
   a(i) = t2;     //S i 
} 

for (i=0;i<n;i++){ 
   a(i) += b; 
} 

//prologue 
t1 = a(0);     //L 0 
t2 = b + t1;   //A 0 
t1 = a(1);     //L 1  
 
 
for (i=0;i<n-2;i++){ 
   a(i) = t2;     //S i 
   t2 = b + t1;   //A i+1 
   t1  = a(i+2);  //L i+2 
} 
 
//epilogue 
a(n-2) = t2;     //S n-2 
t2 = b + t1;     //A n-1 
a(n-1) = t2;     //S n-1 



At instruction level 
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L: ld    [%r1],%f0 
   fadd  f0,f1,f2 
   st    [%r1],f2 
   add   %r1,4,%r1 
   cmp   %r1,%r3 
   bg    L 
   nop  
    
 

   ld    [%r1],%f0 
   fadd  f0,f1,f2 
   ld    [%r1+4],%f0 
 
L: st    [%r1],f2 
   fadd  f0,f1,f2 
   ld    [%r1+8],%f0 
   cmp   %r1,%r3-8 
   bg    L 
   add   %r1,4,%r1 
 
   st    [%r1],f2 
   add   %r1,4,%r1 
   fadd  f0,f1,f2 
   st    [%r1],f2 

st must wait for fadd  
to complete: pipeline stall 
for data hazard 



Impediments to unrolling 
•  Function calls  

•  except in presence of good interprocedural analysis and inlining 

• Conditionals 
•  especially control transfer out of the loop 
•  lose most of the benefit anyway as they break up the basic block. 

• Pointer/array aliasing 
•  compiler can’t be sure different values don’t overlap in memory 



Example 

• Compiler doesn’t know that a[indx[i]] and a[ip] don’t 
overlap 

• Could try hints 
•  tell compiler that indx is a permutation 
•  tell compiler that it is OK to unroll 

• Or could rewrite:  

for (i=0;i<ip;i++){ 
   a[indx[i]] += c[i] * a[ip];   
} 

tmp = a[ip]; 
for (i=0;i<ip;i++){ 
   a[indx[i]] += c[i] * tmp;   
} 



Inlining 
•  Compilers very variable in their abilities 

•  Hand inlining possible  
•  very ugly (slightly less so if done via pre-processor macros) 
•  causes code replication 

•  Compiler has to know where the source of candidate routines is. 
•  sometimes done by compiler flags 
•  easier for routines in the same file 
•  try compiling multiple files at the same time 

•  Very important for OO code  
•  OO design encourages methods with very small bodies 
•  inline keyword in C++ can be used as a hint 



Multiple Optimisation steps 
• Sometimes multiple optimisation steps are required. 

•  Multiple levels of in-lining. 
•  In-lining followed by loop un-rolling followed by CSE.  

•  The compiler may not be able to perform all steps at the 
same time 
•  You may be able to help the compiler by performing some of the 

steps by hand. 
•  Look for the least damaging code change that allows the compiler 

to complete the rest of the necessary changes. 
•  Ideally try each step in isolation before attempting to combine 

hand-optimisations. 



General Cray Compiler Flags 
•  Optimisation Options 

•  -O2     optimal flags [enabled by default] 
•  -O3     aggressive optimization 
•  -O ipaN (ftn) or -hipaN (cc/CC)  inlining, N=0-5 [default N=3] 

•  Create listing files with optimization info 
•  -ra (ftn) or -hlist=a (cc/CC)   creates a listing file with all  

     optimization info 
•  -rm (ftn) or -hlist=m (cc/CC)  produces a source listing with  

     loopmark information 
•  Parallelization Options 

•  -O omp (ftn) or -h omp (cc/CC)  Recognize OpenMP directives  
     [default] 

•  -O threadN (ftn) or    control the compilation and      -
h threadN (cc/CC)    optimization of  OpenMP directives, 

     N=0-3 [default N=2] 
è More info: man crayftn, man craycc, man crayCC 



Recommended CCE Compilation Options 
•  Use default optimization levels 

•  It’s the equivalent of most other compilers -O3  or -fast 
•  It is also our most thoroughly tested configuration 

•  Use -O3,fp3 (or -O3 -hfp3, or some variation) if the application runs 
cleanly with these options 
•  -O3 only gives you slightly more than the default -O2 
•  Cray also test this thoroughly 
•  -hfp3 gives you a lot more floating point optimization (default is -hfp2) 

•  If an application is intolerant of floating point reordering, try a lower -
hfp number 
•  Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the maximum) 
•  Might be needed for tests that require strict IEEE conformance 
•  Or applications that have ‘validated’ results from a different compiler 

•  Do not use too aggressive optimizations , e.g. -hfp4  
•  Higher numbers are not always correlated with better performance 



OpenMP 
•  OpenMP is ON by default 

•  This is the opposite default behavior that you get from GNU and Intel 
compilers 

•  Optimizations controlled by -OthreadN (ftn) or  -hthreadN (cc/CC), 
N=0-3 [default N=2] 

•  To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp 

•  Autothreading is NOT on by default 
•  -hautothread to turn on 
•  Interacts with OpenMP directives 

•  If you do not want to use OpenMP and have OMP directives in 
the code, make sure to shut off OpenMP at compile time 



CCE – GNU – Intel compilers 
•  More or less all optimizations and features provided by CCE are available in 

Intel and GNU compilers 

•  GNU compiler serves a wide range of users & needs 
•  Default compiler with Linux, some people only test with GNU 
•  GNU defaults are conservative (e.g. -O1) 

•   -O3 includes vectorization and most inlining 
•  Performance users set additional options 

•  Intel compiler is typically more aggressive in the optimizations 
•  Intel defaults are more aggressive (e.g -O2), to give better performance “out-of-the-box” 

•  Includes vectorization; some loop transformations such as unrolling; inlining within source file 
•  Options to scale back optimizations for better floating-point reproducibility, easier debugging, etc. 
•  Additional options for optimizations less sure to benefit all applications 

•  CCE is even more aggressive in the optimizations by default 
•  Better inlining and vectorization 
•  Aggressive floating-point optimizations 
•  OpenMP enabled by default 

•  GNU users probably have to specify higher optimisation levels 



Cray, Intel and GNU compiler flags 
Feature Cray Intel GNU 
Listing -hlist=a -opt-report3 -fdump-tree-all 

Free format (ftn) -f free -free -ffree-form 

Vectorization By default at -O1 and 
above 

By default at -O2 and 
above 

By default at -O3 or using  
-ftree-vectorize 

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization) 

Floating-point optimizations -hfpN, N=0...4 -fp-model [fast|fast=2|
precise| except|strict] 

-f[no-]fast-math or 
-funsafe-math-optimizations 

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize 
-ffast-math -funroll-loops 

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx  
-funroll-loops  

OpenMP recognition (default) -fopenmp -fopenmp 

Variables size (ftn) -s real64  
-s integer64 

-real-size 64 
-integer-size 64 

-freal-4-real-8 
-finteger-4-integer-8 



Summary 

• Remember compiler is always there. 

•  Try to help compiler, rather than do its job for it.  

• Use flags and hints as much as possible 

• Minimise code modifications  


