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• Fortran allows the use of derived data types

• Groups of data structures

• Enables building of more sophisticated types than the intrinsic 

ones, i.e. linked data structures, lists, trees etc…

• Imagine we wish to specify objects representing persons

• Each person is uniquely distinguished by a name and room number 

• We can define a corresponding “person” data type as follows:
type person

character (len=10):: name

integer :: officeNumber

end type person
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• To create a derived type variable you use the syntax:
type(person) :: fred, me

• Initialisation (construction) possible as well:
fred = person(”Fred Jones”, 21)

• fred is a variable containing 2 elements: name, 
officeNumber

• Elements (individual components) of derived type can 
be accessed by component selector: % 
fred%name ! contains the name of you

fred%officeNumber ! contains the age of you
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• Can perform computations using derived type variables 
as follows:
• Difference in officeNumber between variables fred and me

integer :: officeNumberDiff

officeNumberDiff = fred%officeNumber – me%officeNumber

• I/O access components in defined order, i.e.:
fred%name

fred%officeNumber
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Supertypes

• Derived type can be used in other derived types:

type corridor

type(person),dimension(:),allocatable :: rooms(:)

integer :: numberOfRooms

end type corridor

type(corridor) :: a1

…

a1%rooms(1)%name

a1%numberOfRooms = 10



Further example

TYPE COORDS_3D

REAL :: x, y, z

END TYPE COORDS_3D

TYPE SPHERE

TYPE(COORDS_3D) :: centre

REAL :: radius

END TYPE SPHERE

TYPE(SPHERE) :: ball

type(coords_3d) :: pt1

pt1 = COORDS_3D(3.0, 4.0, 5.0)

ball = SPHERE(centre=pt1, radius=5.0)



Summary

• Derived types can provide class like features for data
• Package up similar/related data together

• Use composition to build on other types

• Don’t bring functions together with the data

• Derived types can be included in modules
• Together with module procedures can provide class like functionality

• Module private can restrict data to module procedures only

• Module private can restrict procedures to module procedures only

• Derived types and modules together can provide basic OO-like 
functionality
• Does not necessarily provide proper data/procedure control

• Does not provide inheritance 

• Can provide composition and basic polymorphism



Exercise

• Derived type basic exercises

• A separate CFD exercise

• Create appropriate derived types for the percolate 
exercise

• What data structures could be grouped together?  Which module 

should it be created in?


