
Derived Types

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission
before reusing these images.

• Fortran allows the use of derived data types

• Groups of data structures

• Enables building of more sophisticated types than the intrinsic

ones, i.e. linked data structures, lists, trees etc…

• Imagine we wish to specify objects representing persons

• Each person is uniquely distinguished by a name and room number

• We can define a corresponding “person” data type as follows:
type person

character (len=10):: name

integer :: officeNumber

end type person

Derived data types

• To create a derived type variable you use the syntax:
type(person) :: fred, me

• Initialisation (construction) possible as well:
fred = person(”Fred Jones”, 21)

• fred is a variable containing 2 elements: name,
officeNumber

• Elements (individual components) of derived type can
be accessed by component selector: %
fred%name ! contains the name of you

fred%officeNumber ! contains the age of you

Derived data types

• Can perform computations using derived type variables
as follows:
• Difference in officeNumber between variables fred and me

integer :: officeNumberDiff

officeNumberDiff = fred%officeNumber – me%officeNumber

• I/O access components in defined order, i.e.:
fred%name

fred%officeNumber

Derived data types

Supertypes

• Derived type can be used in other derived types:

type corridor

type(person),dimension(:),allocatable :: rooms(:)

integer :: numberOfRooms

end type corridor

type(corridor) :: a1

…

a1%rooms(1)%name

a1%numberOfRooms = 10

Further example

TYPE COORDS_3D

REAL :: x, y, z

END TYPE COORDS_3D

TYPE SPHERE

TYPE(COORDS_3D) :: centre

REAL :: radius

END TYPE SPHERE

TYPE(SPHERE) :: ball

type(coords_3d) :: pt1

pt1 = COORDS_3D(3.0, 4.0, 5.0)

ball = SPHERE(centre=pt1, radius=5.0)

Summary

• Derived types can provide class like features for data
• Package up similar/related data together

• Use composition to build on other types

• Don’t bring functions together with the data

• Derived types can be included in modules
• Together with module procedures can provide class like functionality

• Module private can restrict data to module procedures only

• Module private can restrict procedures to module procedures only

• Derived types and modules together can provide basic OO-like
functionality
• Does not necessarily provide proper data/procedure control

• Does not provide inheritance

• Can provide composition and basic polymorphism

Exercise

• Derived type basic exercises

• A separate CFD exercise

• Create appropriate derived types for the percolate
exercise

• What data structures could be grouped together? Which module

should it be created in?

