
Overloading, abstract 

classes, and inheritance



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material 
under the following terms: You must give appropriate credit, provide a link to the license and 

indicate if changes were made. If you adapt or build on the material you must distribute your work 
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission 
before reusing these images.



Overloading
• Recall that generic interfaces can enable procedure overloading:

module maths_functions

interface my_sum

module procedure real_sum

module procedure int_sum

end interface

contains

function real_sum (a, b)

implicit none

real, intent(in) :: a,b

real_sum = a + b

end function real_sum

function int_sum (a, b)

implicit none

integer, intent(in) :: a,b

int_sum = a + b

end function int_sum

end module



Overloading in F2003

• generic keyword specifies polymorphism for type-bound 
procedure
• polymorphism without interface block

• Without this, type-bound procedures only resolve to a single method

GENERIC [, access-spec ] :: generic-spec => 

binding-name1 [, binding-name2]...

type maths_functions

contains

procedure real_sum

procedure int_sum

generic :: sum => real_sum, int_sum

end type



Overloading

generic-spec

• Interface statement:
• generic-name, must not be same as other type-binding

• operator (op)

• assignment (=)

• Allows for overloading of operators
type maths_functions

contains

procedure real_sum

procedure int_sum

generic :: operator(+) => real_sum, int_sum

end type



Inheritance

• Can extend types in F2003

type, extends(parent_type_name) :: child_type_name

• Inheritance specified via type extension

• Parent type is extended by child type

• Parent type may be a base type

• Child type has access to all component in base type (and ancestors)

• Child type can add new components

• New variables or procedures

• Includes implicit variable from parent class(es)



Inheritance example
type person

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

type, extends(person) :: manager

contains

private

procedure, public :: addPerson

procedure, public :: removePerson

procedure, public :: movePerson

end type



Inheritance example

type(manager) :: bob

type(person) :: fred

write(*,*) bob%getName()

write(*,*) bob%person%getName()

write(*,*) fred%getName()

call bob%movePerson(fred,35)

call fred%movePerson(bob,46) �

�



Abstract classes

• Can define abstract classes and deferred procedures 

• Define data

• Define procedures and interfaces

• Define implement procedures

• Define procedures to be implement by further classes 

• Abstract class cannot be instantiated or allocated

• Can be used for class declaration in methods

• Important for type hierarchies



Abstract class example
type, abstract :: individual

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, non_overridable, public :: getName

procedure, non_overridable, public :: setName

procedure, non_overridable, public :: getOfficeNumber

procedure, non_overridable, public :: setOfficeNumber

procedure(printStuff), deferred :: print

end type individual

abstract interface

subroutine printStuff(self)

import :: individual

class(individual), intent(in) :: self

end subroutine printStuff

end interface



Abstract class example

type, extends(individual):: person

contains

private

procedure :: print => printPerson

end type person

type, extends(person) :: manager

contains

private

procedure :: movePerson()

…

end type manager



Summary

• F2003 allows derived types to extend other derived types

• Enables OO inheritance

• Abstract classes can be defined

• Enables interface/specification of code without requiring 

implementation 

• Operators and procedures can be overloaded

• Same name used to call different procedures/operations based on the 

arguments passed



Exercise

• Extend your previous examples with operator overloading 
and class hierarchies (see the exercise sheet).

• Do the same for the percolate example.


