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Overloading
• Recall that generic interfaces can enable procedure overloading:

module maths_functions

interface my_sum

module procedure real_sum

module procedure int_sum

end interface

contains

function real_sum (a, b)

implicit none

real, intent(in) :: a,b

real_sum = a + b

end function real_sum

function int_sum (a, b)

implicit none

integer, intent(in) :: a,b

int_sum = a + b

end function int_sum

end module



Overloading in F2003

• generic keyword specifies polymorphism for type-bound 
procedure
• polymorphism without interface block

• Without this, type-bound procedures only resolve to a single method

GENERIC [, access-spec ] :: generic-spec => 

binding-name1 [, binding-name2]...

type maths_functions

contains

procedure real_sum

procedure int_sum

generic :: sum => real_sum, int_sum

end type



Overloading

generic-spec

• Interface statement:
• generic-name, must not be same as other type-binding

• operator (op)

• assignment (=)

• Allows for overloading of operators
type maths_functions

contains

procedure real_sum

procedure int_sum

generic :: operator(+) => real_sum, int_sum

end type



Inheritance

• Can extend types in F2003

type, extends(parent_type_name) :: child_type_name

• Inheritance specified via type extension

• Parent type is extended by child type

• Parent type may be a base type

• Child type has access to all component in base type (and ancestors)

• Child type can add new components

• New variables or procedures

• Includes implicit variable from parent class(es)



Inheritance example
type person

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

type, extends(person) :: manager

contains

private

procedure, public :: addPerson

procedure, public :: removePerson

procedure, public :: movePerson

end type



Inheritance example

type(manager) :: bob

type(person) :: fred

write(*,*) bob%getName()

write(*,*) bob%person%getName()

write(*,*) fred%getName()

call bob%movePerson(fred,35)

call fred%movePerson(bob,46) �

�



Abstract classes

• Can define abstract classes and deferred procedures 

• Define data

• Define procedures and interfaces

• Define implement procedures

• Define procedures to be implement by further classes 

• Abstract class cannot be instantiated or allocated

• Can be used for class declaration in methods

• Important for type hierarchies



Abstract class example
type, abstract :: individual

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, non_overridable, public :: getName

procedure, non_overridable, public :: setName

procedure, non_overridable, public :: getOfficeNumber

procedure, non_overridable, public :: setOfficeNumber

procedure(printStuff), deferred :: print

end type individual

abstract interface

subroutine printStuff(self)

import :: individual

class(individual), intent(in) :: self

end subroutine printStuff

end interface



Abstract class example

type, extends(individual):: person

contains

private

procedure :: print => printPerson

end type person

type, extends(person) :: manager

contains

private

procedure :: movePerson()

…

end type manager



Summary

• F2003 allows derived types to extend other derived types

• Enables OO inheritance

• Abstract classes can be defined

• Enables interface/specification of code without requiring 

implementation 

• Operators and procedures can be overloaded

• Same name used to call different procedures/operations based on the 

arguments passed



Exercise

• Extend your previous examples with operator overloading 
and class hierarchies (see the exercise sheet).

• Do the same for the percolate example.


