
 
 

Threaded 
Programming  

 
 
 

Lecture 7: Tasks 



What are tasks? 

•  Tasks are independent units of work 

•  Tasks are composed of: 
–  code to execute 
–  data to compute with 

•  Threads are assigned to perform the 
work of each task. 

Serial Parallel 



3 

OpenMP tasks 

•  The task construct includes a structured block of code 

•  Inside a parallel region, a thread encountering a task 
construct will package up the code block and its data for 
execution 

•  Some thread in the parallel region will execute the task at 
some point in the future 
–  note: could be encountering thread, right now  

•  Tasks can be nested: i.e. a task may itself generate tasks. 



4 

task directive 

Syntax: 
Fortran:  

        !$OMP TASK [clauses] 

            structured block 

        !$OMP END TASK 

C/C++:        

       #pragma omp task [clauses] 

                     structured-block     



Example 

5 

#pragma omp parallel 
{  
  #pragma omp master  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
  #pragma omp task 
     billy();  
   }  
} 

Thread 0 packages 
tasks 

Create some threads 

Tasks executed by 
some thread in some 
order 



6 

When/where are tasks complete? 

•  At thread barriers (explicit or implicit) 
–  applies to all tasks generated in the current parallel region up to the 

barrier 

•  At taskwait directive 
–  i.e. Wait until all tasks defined in the current task have completed.   
–  Fortran:  !$OMP TASKWAIT 
–  C/C++:  #pragma omp taskwait 

–  Note: applies only to tasks generated in the current task, not to 
“descendants” . 

–  The code executed by a thread in a parallel region is considered a 
task here 



When/where are tasks complete? 

•  At the end of a taskgroup region 
–  Fortran:   

    !$OMP TASKGROUP  

     structured block 

    !$OMP END TASKGROUP 
–  C/C++:   
  #pragma omp taskgroup 
         structured-block 

–  wait until all tasks created within the taskgroup have 
completed 

–  applies to all “descendants” 

7 



Example 

8 

#pragma omp parallel 
{  
  #pragma omp master  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
     #pragma taskwait 
  #pragma omp task 
     billy();  
   }  
} 

fred() and 
daisy() must 
complete before 
billy() starts 



9 

Linked list traversal 

•  Classic linked list traversal 

•  Do some work on each item in the list 

•  Assume that items can be processed independently 

•  Cannot use an OpenMP loop directive 

p = listhead ; 
while (p) {  
  process(p); 
  p=next(p) ; 
}  
    



10 

Parallel linked list traversal 

#pragma omp parallel 
{  
  #pragma omp master 
   {  
    p = listhead ; 
    while (p) {  
       #pragma omp task firstprivate(p)        
             {          
               process (p); 
             } 
       p=next (p) ; 
     }  
   }  
} 

makes a copy of p  
when the task is 
packaged 

Only one thread 
packages tasks 



11 

Thread 0: 
 
p = listhead ; 
while (p) {  
< package up task > 
   p=next (p) ; 
} 
 
while (tasks_to_do){ 
  < execute task >  
}  
 
< barrier >  
  

Other threads: 
 
 
 
 
while (tasks_to_do) { 
< execute task >  
}  
 
 
 
 
< barrier >  

Parallel linked list traversal 



12 

Parallel pointer chasing on multiple lists 

#pragma omp parallel  
{  
   #pragma omp for private(p) 
   for ( int i =0; i <numlists; i++) {  
       p = listheads[i] ; 
       while (p ) {  
       #pragma omp task firstprivate(p) 
           { 
             process(p); 
           }  
       p=next(p); 
       } 
   } 
} 

All threads package 
tasks 



Data scoping with tasks 

•  Variables can be shared, private or firstprivate with respect 
to task 

•  These concepts are a little bit different compared with 
threads: 
–  If a variable is shared on a task construct, the references to it 

inside the construct are to the storage with that name at the point 
where the task was encountered 

–  If a variable is private on a task construct, the references to it inside 
the construct are to new uninitialized storage that is created when 
the task is executed 

–  If a variable is firstprivate on a construct, the references to it inside 
the construct are to new storage that is created and initialized with 
the value of the existing storage of that name when the task is 
encountered 

13 



14 

Data scoping defaults 

•  The behavior you want for tasks is usually firstprivate, because the task 
may not be executed until later (and variables may have gone out of 
scope) 

–  Variables that are private when the task construct is encountered are firstprivate by 
default 

•  Variables that are shared in all constructs starting from the innermost 
enclosing parallel construct are shared by default 

#pragma omp parallel shared(A) private(B) 
{ 
   ... 
#pragma omp task 
   { 
       int C; 
       compute(A, B, C); 
   } 
} 

A is shared 
B is firstprivate 
C is private 



int fib (int n) 
{ 
  int x,y; 
  if ( n < 2 ) return n; 
  x = fib(n-1); 
  y = fib(n-2); 
  return x+y 
} 
 
int main() 
{   
  int NN = 5000; 
  fib(NN); 
} 

Example: Fibonacci numbers 

•  Fn = Fn-1 + Fn-2 

•  Inefficient O(n2) recursive 
implementation! 



Parallel Fibonacci 

16 

int fib ( int n ) 
{ 
int x,y; 
   if ( n < 2 ) return n; 
#pragma omp task shared(x) 
   x = fib(n-1); 
#pragma omp task shared(y) 
   y = fib(n-2); 
#pragma omp taskwait 
   return x+y; 
} 
int main() 
{  int NN = 5000; 
   #pragma omp parallel 
   { 
       #pragma omp master 
          fib(NN); 
   } 
} 

•  Binary tree of tasks 

•  Traversed using a recursive 
function 

•  A task cannot complete until 
all tasks below it in the tree 
are complete (enforced with 
taskwait) 

•  x,y are local, and so 
private to current task 

–  must be shared on child tasks 
so they don’t create their own 
firstprivate copies at this level!  



17 

Using tasks 

•  Getting the data attribute scoping right can be quite tricky 
–  default scoping rules different from other constructs 
–  as ever, using default(none) is a good idea 

•  Don’t use tasks for things already well supported by OpenMP 
–  e.g. standard do/for loops 
–  the overhead of using tasks is greater 

•  Don’t expect miracles from the runtime 
–  best results usually obtained where the user controls the 

number and granularity of tasks 
 



18 

Parallel pointer chasing again 
#pragma omp parallel 
{  
  #pragma omp single private(p) 
   {  
    p = listhead ; 
    while (p) {  
       #pragma omp task firstprivate(p)        
             {          
               process (p,nitems); 
             } 
        for (i=0; i<nitems &&p; i++){ 
           p=next (p) ; 
        } 
     }  
   }  
} 

process 
nitems at 
a time 

skip  nitems ahead 
in the list 



Parallel Fibonacci again 

19 

int fib ( int n ) 
{ 
int x,y; 
   if ( n < 2 ) return n; 
#pragma omp task shared(x) if(n>30) 
   x = fib(n-1); 
#pragma omp task shared(y) if(n>30) 
   y = fib(n-2); 
#pragma omp taskwait 
   return x+y; 
} 
int main() 
{  int NN = 5000; 
   #pragma omp parallel 
   { 
       #pragma omp master 
          fib(NN); 
   } 
} 

•  Stop creating 
tasks at some 
level in the tree. 



20 

Exercise 

•  Mandelbrot example using tasks.  


