
Modern Fortran

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Acknowledgements

• A C Marshall from the University of Liverpool (funded by
JISC/NTI) first presented this material. He acknowledged
Steve Morgan and Lawrie Schonfelder.

• Helen Talbot and Neil Hamilton-Smith from the University
of Edinburgh took the overheads from that course and
worked on them to produce the associated Student Guide.

• Subsequent revisions of the material have been made by
Adrian Jackson, Kenton D’Mellow and Steve Thorn from
the University of Edinburgh (ARCHER and ECDF teams).

Who am I?

Adrian Jackson adrianj@epcc.ed.ac.uk

@adrianjhpc

• I…
• Help run training for EPCC

• MSc

• PRACE Advanced Training Centre

• ARCHER training programme

• commercial training

• ...

• Also do HPC research
• new parallel programming models, accelerators, performance, ...

ARCHER Service
Overview and Introduction

• UK National Supercomputer Service, managed by
EPSRC
• housed, operated and supported by EPCC

• hardware Supplied by Cray

• Training provided by the ARCHER Computational
Science and Engineering (CSE) support team
• 72 days per year at various locations round the UK

• free to all academics

EPCC’s Advanced Computing Facility

ARCHER in a nutshell

• UK National Supercomputing Service

• Cray XC30 Hardware

• Nodes based on 2×Intel Ivy Bridge 12-core processors

• 64GB (or 128GB) memory per node

• 4920 nodes in total (118,080 cores)

• Linked by Cray Aries interconnect (dragonfly topology)

• Cray Application Development Environment

• Cray, Intel, GNU Compilers

• Cray Parallel Libraries (MPI, SHMEM, PGAS)

• DDT Debugger, Cray Performance Analysis Tools

Storage

• /home – NFS, not accessible on compute nodes

• For source code and critical files

• Backed up

• > 200 TB total

• /work – Lustre, accessible on all nodes

• High-performance parallel filesystem

• Not backed-up

• > 4PB total

• RDF – GPFS, not accessible on compute nodes

• > 20 PB Long term data storage

Key ARCHER Resources

• Upcoming courses

• http://www.archer.ac.uk/training/

• Material from past courses

• http://www.archer.ac.uk/training/past_courses.php

• Virtual tutorials (online)

• http://www.archer.ac.uk/training/virtual/

• Documentation

• http://www.archer.ac.uk/documentation/

Other Resources
• Please fill in the feedback form!

• http://www.archer.ac.uk/training/feedback/

• General enquiries about ARCHER go to the helpdesk
• support@archer.ac.uk

• EPCC runs one-year taught postgraduate masters courses
• MSc in HPC and MSc in HPC with Data Science

• awarded by the University of Edinburgh since 2001

• scholarships available

• http://www.epcc.ed.ac.uk/msc/

What is EPCC?
• UK national supercomputer centre

• founded in 1990 (originally Edinburgh Parallel Computing Centre)

• a self-funding Institute at The University of Edinburgh

• running national parallel systems since Cray T3D in 1994

• around 65 full-time staff

• a range of academic research and commercial projects

• one-year postgraduate masters in HPC www.epcc.ed.ac.uk/msc/

• Get in contact if you want to collaborate

• many staff are named RAs on research grants

• joint research proposals

• European project consortia

• ...

Online accredited courses

• Run from January to May

• entirely online: www.epcc.ed.ac.uk/online-courses/.

• each course is 20 credits (c.f. a 180-credit MSc)

Access to ARCHER (during course)

• Guest accounts for duration of course
• should only be used in the classroom

• Accounts will be closed immediately after the course
• all files etc will be deleted

• Take copies of all your work before course ends!

• Course materials (slides, exercises etc) available from course
web page
• archived on ARCHER web pages for future reference

• You must agree to the ARCHER terms and conditions:
• http://www.archer.ac.uk/about-archer/policies/tandc.php

Access to ARCHER (longer term)

• Various ways to apply for time on ARCHER
• see http://www.archer.ac.uk/access/

• All require justification of resources
• Instant Access has the lowest barrier to entry

• designed for exploratory work, e.g. in advance of a full application

• Or take the “ARCHER Driving Test”
• www.archer.ac.uk/training/course-material/online/driving_test.php

• successful completion allows you to apply for an account for 12
months with an allocation of around 80,000 core-hours

• backed up by online training materials

• www.archer.ac.uk/training/course-material/online/

Learning Outcomes

• On completion of this course students should be able to:

• Understand and develop modularised Fortran programs.

• Compile and run Fortran programs on ARCHER.

Outline Timetable

• Day 1

• 09:30 LECTURE: Fundamentals of Computer Programming

• 10:15 PRACTICAL: Hello world

• 10:30 LECTURE: Fundamentals of Fortran cont.

• 11:00 BREAK: Coffee

• 11:30 PRACTICAL: Formatting, simple input

• 12:30 BREAK: Lunch

• 13:30 LECTURE: Logical Operations and Control Constructs

• 14:30 PRACTICAL: Numeric manipulation

• 15:30 BREAK: Tea

• 16:00 LECTURE: Arrays

• 17:00 PRACTICAL: Arrays

• 17:30 CLOSE

Outline Timetable

• Day 2

• 09:30 PRACTICAL: Arrays (cont'd)

• 10:15 LECTURE: Procedures

• 11:15 BREAK: Coffee

• 11:45 PRACTICAL: Procedures

• 12:45 BREAK: Lunch

• 13:45 LECTURE: Modules and Derived Types

• 15:15 BREAK: Tea

• 15:45 PRACTICAL: Modules, Types, Portability

• 17:00 CLOSE

Modern Fortran

Fundamentals of Programming

• A computer must be given a set of unambiguous
instructions (a program)

• Programming languages have a precise syntax. They
can be:

• high-level, like Fortran, C or Java

• low-level, like assembler code

• A compiler translates high-level to low-level

Fortran

• Fortran comes from FORmula TRANslation

• Defined by an international standard

• Each update removes obsolescent features, corrects any
mistakes, adds a few new features.

Character Set

• Alphanumeric:

• a-z, A-Z, 0-9, underscore

• lower case letters are equivalent to upper case letters

• 21 symbols, shown in the table on page 6

Tab

• Tab character is not in the Fortran character set

• Using a Tab may generate a warning message from the
compiler

Intrinsic Data Types

• Two intrinsic type classes:

• Numeric, for numerical calculations

integer

real

complex

• Non-numeric, for text-processing and control

character

logical

Numeric Data Types

• Integer: stored exactly, often in the range

[-2147483648 , 2147483647]

• Real: stored as exactly as possible in the form of
mantissa and exponent, eg 0.271828 x 101

• The range of the exponent is typically in [-307,308]

• Complex: an ordered pair of real values

Integer literal constants

• An entity with a fixed value within some range

-333

-1

0

2

32767

Real literal constants

• An entity with a fixed value within some range

-333.0

-1.0

0.

2.0

32767.0

3.2767E4

3.2767D4

Non-numeric Data Types

• Character: for text-processing

• Logical: truth values for control

Character literal constants

• An entity with a fixed value

“a”

“abc”

“abc and def”

“Isn’t”

‘Isn’’t’

Logical literal constants

• One of the two fixed values

.TRUE.

.FALSE.

Names

• Names may be assigned to programs, subprograms,
memory locations (variables), labels

• Naming convention – names:

• must be unique within programs

• must start with a letter

• may use letters, digits, and underscore

• may not be longer than 31 characters

Spaces

• Spaces must not appear:

• within keywords

• within names

• Spaces must appear:

• between keywords

• between keywords and names

• integerage

• integer :: ag e

Implicit Typing

• An undeclared variable has an implicit type:

• If 1st letter of name is in the range I to N then it is of type INTEGER

• Otherwise it is of type REAL

• This is a terrible idea! Always use:

IMPLICIT NONE

which requires every variable to be declared.

Variable and value

• The formal syntax of a declaration of a variable of a given
type is

<type>[,attribute-list] :: &

<variable-list>[=value]

INTEGER :: k = 4

REAL, PARAMETER :: pi = 3.14159

15/11/11

Numeric type declarations

INTEGER :: i, j

REAL :: p

COMPLEX :: cx

Non-numeric type declarations

LOGICAL :: l1

CHARACTER :: s

CHARACTER(LEN=12) :: st

Initial values

• Declaring a variable does not assign a value to it: until a
value has been assigned the variable is known as an
unassigned variable.

INTEGER :: i=1, j=2

REAL :: p=3.0

COMPLEX :: cx=(1.0,1.732)

cx = (2.0,2.732)

Initial values

LOGICAL :: on=.TRUE., off=.FALSE.

CHARACTER :: s=‘a’

CHARACTER(LEN=12) :: st=‘abcdef’

• st will be padded to the right with 6 blanks

Initial values

• The only intrinsic functions which may be used in
initialisation expressions are:

• RESHAPE

• SELECTED_INT_KIND

• SELECTED_REAL_KIND

• KIND

Constant values

• The parameter attribute is used to set an unalterable value in a
variable:

REAL, PARAMETER :: pi = 3.141592

REAL, PARAMETER :: radius = 3.5

REAL :: circum = 2.0 * pi * radius

The variable circum does not inherit the attribute PARAMETER

pi = 4.0 �

radius = 1.0 �

circum = 5.0 �

Parameter attribute

• Scalar named constant of type character:

CHARACTER(LEN=*),PARAMETER :: &

son=‘bart’, dad=“Homer”

• This is equivalent to:

CHARACTER(LEN=4), PARAMETER :: &

son=‘bart’

CHARACTER(LEN=5), PARAMETER :: &

dad=“Homer”

Comments

• An exclamation mark makes the rest of the line a
comment:

! Assign value 1 to variable i

i = 1 ! i holds the value 1

! Character context differs:

st = “No comment!”

Continuation lines

• Continuation lines (max. 39) are marked with an ampersand:

CHARACTER(LEN=*), PARAMETER :: &

son = ‘bart’

CHARACTER(LEN=*), PARAMETER ::

& son = ‘bart’

• Breaking character strings is possible (but recommended only
if necessary)

CHARACTER(LEN=4) :: son = ‘ba&

&rt’

Assignment

• All elements of this should be of the same type class
(can mix numeric types)

• Each type class has its own set of operators

k = k + 1; a = b - c

kinship = son//’ son of ‘//dad

truth = p1.and.p2

Numeric operators

** exponentiation: exponent a scalar

* multiplication / division

+ addition - subtraction

Shown in decreasing order of precedence. The leftmost of
two operators of the same precedence applied first.

Character operators

CHARACTER(LEN=6):: str1=“abcdef”

CHARACTER(LEN=3):: str2=“xyz”

str1(1:1) ! Substring “a”

str1//str2 ! Concatenation

! giving “abcdefxyz”

Operator precedence

• Operators have the precedence shown in descending
order in the table on page 11

• Parentheses () may be used

• Operators of equal precedence are applied in left to right
sequence

Mixed type Numeric expressions

• Calculations must be performed (internally) between objs
of the same type. This is not a restriction for the
programmer

• Precedence of types is:

COMPLEX

REAL

INTEGER

• Result always of higher type

Mixed type assignment

<integer variable> = <real expression>

The <real expression> is evaluated, truncated,
assigned to an <integer variable>

<real variable> = <integer expression>

The <integer expression> is evaluated, promoted to
type real, assigned to a <real variable>

Integer division

• Any remainder is discarded:

12/4 → 3

12/5 → 2

12/6 → 2

12/7 → 1

REAL :: X

x = 12/5

• Can be fixed, i.e.:

12/5.d0 → 2.4

Procedure calls

• In the program on page 29 we have:

SQRT(REAL(D))! D of type integer

• REAL returns a type real value of its argument D

• SQRT needs a type real argument to return its square root

Numeric intrinsics
• ABS(A) Absolute value
• AIMAG(Z) Imaginary part of a complex number
• AINT(A, KIND) Truncation to whole number Optional KIND
• ANIN(A,KIND) Nearest whole number Optional KIND
• CEILING(A) Least integer greater than or equal to number
• CMPLX(X,Y,KIND) Conversion to complex type Optional Y, KIND
• CONJG(Z) Conjugate of a complex number
• DBLE(A) Conversion to double precision real type
• DIM(X,Y) Positive difference
• DPROD(X,Y) Double precision real product
• FLOOR(A) Greatest integer less than or equal to number
• INT(A,KIND) Conversion to integer type Optional KIND
• MAX(A1,A2,A3,...) Maximum value Optional A3,...
• MIN(A1,A2,A3,...) Minimum value Optional A3,...
• MOD(A,P) Remainder function
• MODULO(A,P) Modulo function
• NINT(A,KIND) Nearest integer Optional KIND
• REAL(A,KIND) Conversion to real type Optional KIND
• SIGN(A,B) Transfer of sign

Mathematical intrinsics
• ACOS(X) Arccosine
• ASIN(X) Arcsine
• ATAN(X) Arctangent
• ATAN2(Y,X) Arctangent
• COS(X) Cosine
• COSH(X) Hyperbolic cosine
• EXP(X) Exponential
• LOG(X) Natural logarithm
• LOG10(X) Common logarithm (base 10)
• SIN(X) Sine
• SINH(X) Hyperbolic sine
• SQRT(X) Square root
• TAN(X) Tangent
• TANH(X) Hyperbolic tangent

WRITE statement

WRITE(*,*) <output_list>

• Write the items of <output_list> to the default output

device using default formatting

• Write calls move on to a new line each time (automatically)

WRITE(*,*) “k =“, k, I, j

WRITE(*,*) ‘hello’

READ statement

READ(*,*) <input_list>

• Read the items of <input_list> from the default input

device using default formatting

• Read calls would read a new line each time

READ(*,*) x, y

Writing a program

The main steps are:

1. Specify the problem

2. Analyse the steps to a solution

3. Write Fortran code

4. Compile the program and run tests

Format of Fortran code

• The program source code is essentially free format with:

• up to 132 characters per line

• significant spaces

• ! Comments

• & continuation lines of a statement

• ; separating statements on a line

Program structure

PROGRAM optional_name

! Specification part

! Execution part

END PROGRAM optional_name

Specification part

• Declare type and name of variables

IMPLICIT NONE

INTEGER :: i

REAL :: p, q

COMPLEX :: x

CHARACTER :: c

CHARACTER(LEN=12) :: cc

Execution part

WRITE(6,”(A)”) “text string”

READ(*,*) variable_name

Errors

• Compile time

– Mistyped variable name

– Syntactic error in code

• Run time

– Numeric value falls outside valid range

– Logical error takes execution to wrong part of program, maybe

using unassigned variables

Practical 1a

• Try the questions on exercise sheet (or page 22 of course
notes)
• Practical Exercise 1: Qs 1, 3, and 4 only.

• Guest account:

• Log on using SSH:

• ssh –AX guest03@login.archer.ac.uk

• Password:

• If you are using Windows or do not have SSH installed you will need to

obtain an SSH client. One such client is Putty, which can be obtained here

(or just search for it on the internet):

• http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

• http://sourceforge.net/projects/xming/

dfgdf?485Y

dfgdf?485Y

Compilers for practicals

• ARCHER has 3 compilers installed:

• Cray, Intel, GNU

• By default Cray is active when you login

• That’s fine for this course

• Fortran compiler on ARCHER is called:
• ftn

• i.e.:

• guest05@eslogin001:~> ftn –o hello helloworld.f90

• guest05@eslogin001:~> ./hello

WRITE statement

WRITE(*,*) <output_list>

• Write the items of <output_list> to the default output

device using default formatting

WRITE(*,*) “k =“, k

WRITE statement

• WRITE(unit=u,fmt=<format_specification>)

<output_list>

• Write the items of <output_list> to the device
identified as unit u using the
<format_specification>

WRITE(unit=6,fmt=“(A3,I4)”) &

“

WRITE(6,“(A3,I4)”) &

“k =”, k

WRITE statement

• Each WRITE statement begins output on a new record

• The WRITE statement can transfer any object of intrinsic

type to the standard output

• Be aware of the reserved unit numbers: 0, 5, 6

0 Standard Error (error output)

6 Standard output (screen or redirect)

5 Standard input (keyboard or redirect)

READ statement

READ(*,*) <input_list>

• Read the items of <input_list> from the default input

device using default formatting

READ(*,*) x, y

READ statement

READ(unit=u,fmt=<format_specification>)

<input_list>

• Read the items of <input_list> from the device
identified as unit u using the
<format_specification>

READ(unit=5,fmt=“(I4,F5.1)”) i,r

Prompting for input

WRITE(*,“(a)”,ADVANCE=“no”) &

“prompt text”

• Note that here the format specification has optionally

been given as a character literal constant

File handling

• File name has to be linked to a unit number:

OPEN(unit=u, file=file_name)

• For example:

OPEN(unit=10, file=“result”)

WRITE(unit=10,fmt=“(i4,f4.1)”)&

i, r

File handling

• A file may be disconnected by reference to its unit
number:

CLOSE(unit=u)

• For example:

CLOSE(unit=10)

End of file

• Can check if a read from file has been successful or has
reached the end of file

integer :: myerr, x, y

open(14,file=“file.dat”)

do

read(14,*,iostat=myerr) x, y

if(myerr /= 0) exit

write(*,*) x,y

end do

Formatting input and output

• Conversion between computer code for storing items and
the characters on keyboard or screen

• An edit descriptor is needed for each item to be
converted

Edit descriptor: integer

• Iw Integer value in a field w symbols wide,

possibly including a negative sign

I5

• bbbb1

• -5600

Edit descriptor: floating point

• Fw.d Floating point number, field width w with
d digits after the decimal point

F7.2

• bbb1.00

• -273.18

• Decimal point is always present

Edit descriptor: exponential

• Ew.d Exponential form, field width w with d digits

after the decimal point

E9.2

• b0.10E+01

• -0.27E+03

Edit descriptor: logical

• Lw Logical value in field width w

• L1

• T

• L2

• bT

Edit descriptor: alphanumeric

• An Characters in field width n

“FOUR”

• A3 FOU

• A4 FOUR

• A5 FOURb bFOUR input
output

Edit descriptor: general

• Gw.d General edit descriptor

• For real or complex: Ew’.d’ or Fw’.d’

where w’ = w - 4

• For integer: Iw

• For logical: Lw

• For character: Aw

Narrow field width

INTEGER :: i = 12345, j = -12345

WRITE(unit=6,fmt=“(2I5)”) i, j

12345*****

Spaces and newlines

• X denotes a single space

• nX denotes n spaces

• / denotes a newline

• // denotes 2 newlines

• n/ denotes n newlines

Format specification

• This is a comma separated list of edit descriptors
contained in (parentheses)

• There must be an edit descriptor for each item in the
input or output list

(A4,F4.1,2X,A5,F4.1)

(2A5) 2(A5,1X)

Repeat factors

• For a single edit descriptor:

(I2,I2,I2) → (3I2)

• For a sequence of edit descriptors:

(2X,A5,F4.1, 2X,A5,F4.1) → (2(2x,A5,F4.1))

write(*,”(A12)”) “hello world!”

• Format statement

• reusable format definition

104 format(2(2x,A5,F4.1))

write(*,104) …

Unequal counts

• Number of edit descriptors less than number of items in
the list:

(3I2) I,J,K,L

I, J, K 1st record

L 2nd record

Unequal counts

• Number of edit descriptors more than number of items in
the list:

(5I2) I,J,K,L

I, J, K, L 1 record only

Practical 1b

• Try the questions on exercise sheet (or page 22 of course
notes)

• Practical Exercise 1: Including Qs 2 and 5

Relational operators

• > (.GT.) greater than

• >= (.GE.) greater than or equal

• <= (.LE.) less than or equal

• < (.LT.) less than

• /= (.NE.) not equal to

• == (.EQ.) equal to

• Logical type result from numeric operands

Complex operands

• If either or both operands being compared are complex
then the only operators allowed are:

== and /=

Logical operators

• .NOT. .true. if operand .false.

• .AND. .true. if both operands .true.

• .OR. .true. if at least one operand
.true.

• .EQV. .true. if both operands same

• .NEQV. .true. if both operands different

IF statement

IF (<logical-expression>) &

<executable-statement>

• Examples:

IF (x > y) a = 3

IF (I /= 0 .AND. J /=0) k=l/(i*j)

IF ((I /= 0) .AND. (J /=0))& k=l/(i*j)

IF statement

• There is no shorthand for multiple tests on one variable

• Example: do J and K each hold the same value as I?

IF (I == J .AND. I == K) ...

Real-valued comparisons

REAL :: a, b, tol=0.001

LOGICAL :: same

! Assign values to a and b

IF (ABS(a-b) < tol) same=.TRUE.

IF…THEN construct

IF (i == 0) THEN

! condition true

WRITE(*,*) “I is zero”

! more statements could follow

END IF

IF…THEN…ELSE construct

IF (i == 0) THEN

! condition true

WRITE(*,*) “I is zero”

ELSE

! condition false

WRITE(*,*) “I is not zero”

END IF

IF…THEN…ELSE IF construct

IF (I == 17) THEN

Write(*,*) “I > 17”

ELSE IF (I >= 17) THEN

Write(*,*) “I is 17”

ELSE

Write(*,*) “I < 17”

END IF

Nested, Named IF constructs

outa: IF (a == 0) THEN

Write(*,*) “a is 0”

inna: IF (b > 0) THEN

Write(*,*) “a is 0 and b > 0”

END IF inna

END IF outa

SELECT CASE construct

SELECT CASE (i)

CASE(2,3,5,7)

Write(6,”A10)”) “i is prime”

CASE(10:)

Write(6,”(A10)”) “i >= 10”

CASE DEFAULT

Write(6,”(A22)”) &

“I not prime and I < 10”

END SELECT

Select case components

• The case expression must be scalar and of type
INTEGER, LOGICAL or CHARACTER

• The case selector must be of the same type as the case
expression

Unbounded DO loop

i = 0

DO

i = i + 1

Write(6,”(A4,I4)”) “i is”, i

END DO

Conditional EXIT from loop

i = 0

DO

i = i + 1

IF (i >= 100) EXIT

Write(6,”(A4,I4)”) “i is”, i

END DO

! EXIT brings control to here

Conditional CYCLE in loop

i = 0

DO

i = i + 1

IF (i > 49 .AND. i < 60) CYCLE

IF (i > 100) EXIT

Write(6,”(A4,I4)”) “i is “, i

END DO ! CYCLE brings control to here

! EXIT brings control to here

Named, Nested loops

outa: DO

ina: DO

IF (a > b) THEN

finished = .true.

EXIT outa

IF (a == b) CYCLE outa

IF (c > d) EXIT ina

END DO ina

if(finished) exit

END DO outa

Indexed DO loops

DO i = 1, 100, 1

! i takes the values 1,2,3..100

END DO

• Index variable i must be a named, scalar, integer variable

• i takes values from 1 to 100 in steps of 1

• i must not be explicitly modified in the loop

• Step is assumed to be 1 if omitted

Upper bound not met

DO I = 1, 30, 2

! I takes values 1, 3,…,27, 29

END DO

Index decremented

DO I = 30, 1, -2

! I takes values 30,28,…,4,2

END DO

Zero-trip loop

lower = 5

upper = 4

DO I = lower,upper

! Zero iterations, loop skipped

END DO

Missing stride

DO I = 1, 30

! I takes values 1, 2,…, 29, 30

END DO

DO construct index

DO I = 1, n

IF (I == k) EXIT

END DO

endif

• n < 1, zero trip, I given value 1

• n > 1 and n >= k, I same value as k

• n > 1 and n < k, I has value n+1

Practical 2

• Try the questions in practical 2 (or on page 36 of the
notes)

• You will need the two files: statsa and statsb

• http://tinyurl.com/archerffiles

Arrays

• An array is a collection of values of the same type

• Particular elements in an array are identified by
subscripting

One-dimensional array

REAL, DIMENSION(1:15) :: X

REAL, DIMENSION(15) :: X

• REAL, DIMENSION(-7:7) :: Y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Two-dimensional array

REAL, DIMENSION(1:5,1:3) :: Y, Z

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

4,1 4,2 4,3

5,1 5,2 5,3

Two-dimensional array

REAL, DIMENSION(-4:0,3) :: B

-4,0 -4,1 -4,2

-3,0 -3,1 -3,2

-2,0 -2,1 -2,2

-1,0 -1,1 -1,2

0,0 0,1 0,2

Array terminology

• Rank: number of dimensions, max 7

• Bounds: lower and upper limits of indices

(default lower bound is 1)

• Extent: number of elements in a dimension

• Size: total number of elements

• Shape: ordered sequence of all extents

• Conformable: arrays of the same shape

Array declarations

• Each named array needs a type and a dimension:

REAL, DIMENSION(15) :: x

REAL, DIMENSION(1:5,1:3) :: y,z

INTEGER, PARAMETER :: lda=5

LOGICAL, DIMENSION(1:lda) :: ld

Array element ordering

• Fortran does not specify how arrays should be located in
memory

• In certain situations element ordering is in column major
form, ie the first subscript changes fastest

Array element ordering

1 6 11

2 7 12

3 8 13

4 9 14

5 10 15

Array conformance

• Arrays or sub-arrays conform if they have the same
shape

• Conforming arrays can be treated as a single variable in
an expression:

c = d

c = 1.0

c = a + b

Conformance

C = D

valid

Non-Conformance

B = A

same size, different shape: invalid

1,1

5,3

1 15

Elements

A(1) = 0.0 ! set one element to zero

B(0,0) = A(3) + C(5,1)

! Set an element of B to

! the sum of two other elements

Whole array expressions

a = 0.0 ! scalar conforms to any shape

b = c + d ! b,c,d must be conformable

e = sin(f) + cos(g)! and so must e,f,g

Array Sections

• Specified by subscript-triplets for each dimension:

• [<bound1>]:[<bound2>]:[<stride>]

• <bound1>, <bound2> and <stride>

• must each be scalar integer expressions

Array Sections

• REAL, DIMENSION(1:15) :: A

• A(:) whole array

• A(m:) elements m to 15 inclusive

• A(:n) elements 1 to n inclusive

• A(m:n) elements m to n inclusive

• A(::2) elements 1 to 15 in steps of 2

• A(m:m) 1 element section of rank 1

Array Sections

• Given

• REAL, DIMENSION(1:6,1:8) :: P

• P(1:3,1:4) is a simple 3x4 sub-array

• P(1:6:2,1:8:2) takes elements from alternate rows

and alternate columns and is also a 3x4 sub-array

P(1:3,1:4)

P(1:6:2,1:8:2)

P(3,2:7) rank-one P(3:3,2:7) rank-two

WHERE statement

WHERE (<logical-array-expr>) &

<array-variable> = <expr>

For example:

WHERE (P > 0.0) P = log(P)

WHERE construct

WHERE (<logical-array-expr>)

<array-assignments>

END WHERE

For example:

WHERE (P > 0.0)

X = X + log(P)

Y = Y – 1.0/P

END WHERE

COUNT function

COUNT (<logical-array-expr>)

For example:

nonnegP = COUNT(P > 0.0)

SUM function

SUM(<array>)

For example:

sumP = SUM(P)

MOD function

For example:

P = MOD(P,2)

replaces each element of P by the remainder when that
element is divided by 2

Program old_times (page 46)

• Example uses:

• where, sum, count (and mod)

• Takes array sections r1(1:n) and r2(1:n)

MINVAL function

MINVAL(<array>)

Returns the minimum value of an element of <array>

For example:

minP = MINVAL(P)

MAXVAL function

MAXVAL(<array>)

Returns the maximum value of an element of <array>

For example:

maxP = MAXVAL(P)

MINLOC function

MINLOC(<array>)

Returns a rank-one integer array of size equal to rank of
<array> with the subscripts of the element of <array>
with minimum value. MINLOC assumes the declared lower
bounds of <array> were 1

MINLOC function

REAL, DIMENSION(1:6,1:8) :: P

INTEGER, DIMENSION(1:2) :: PRC

! Assign values to P

PRC = MINLOC(P)

! PRC(1) returns row subscript

! PRC(2) returns column subscript

MAXLOC function

MAXLOC(<array>)

Returns a rank-one integer array of size equal to rank of
<array> with the subscripts of the element of <array>
with maximum value. MAXLOC assumes the declared lower
bounds of <array> were 1

MAXLOC function

REAL, DIMENSION(1:6,1:8) :: P

INTEGER, DIMENSION(1:2) :: PRC

! Assign values to P

PRC = MAXLOC(P)

P(PRC(1),PRC(2))

! PRC(1) returns row subscript

! PRC(2) returns column subscript

Program seek_extremes (p48)

• Example uses:

• minval, maxval, minloc and maxloc on the

whole rank 2 array magi

Array input/output

• Elements of an array of rank greater than 1 are stored in
column major form

• For arrays of rank 2 the intrinsic function TRANSPOSE

changes rows and columns

TRANSPOSE function

1 4 7 1 2 3

2 5 8 4 5 6

3 6 9 7 8 9

Array constructors

Give arrays or array-sections specific values: arrays must
be rank 1 and conform

INTEGER :: i

INTEGER, DIMENSION(1:8) :: ints

ints=(/100,1,2,3,4,5,6,100/)

ints=(/100,(i, i=1,6), 100/)

RESHAPE intrinsic function

• Form is RESHAPE(<source>,<shape>)

INTEGER, DIMENSION(1:2,1:2) :: a

a=RESHAPE((/1,2,3,4/),(/2,2/))

1 3

2 4

Named Array Constants

INTEGER, DIMENSION(3), &

PARAMETER :: Unit_vec = (/1,1,1/)

INTEGER, DIMENSION(3,3), &

PARAMETER :: Unit_matrix = &

RESHAPE((/1,0,0,0,1,0,0,0,1/),(/3,3/))

Allocatable array declaration

• Declare the array giving its type, rank, the attribute
allocatable, and name:

REAL, DIMENSION(:), &

ALLOCATABLE :: ages

REAL, DIMENSION(:,:), &

ALLOCATABLE :: ages

Allocatable array allocation

• Specify the bounds of the array and optionally check for
success

ALLOCATE(ages(1:60), STAT=ierr)

• If the integer variable ierr returns 0 then the array
ages has been allocated

Deallocating arrays

DEALLOCATE(speed, STAT=ierr)

DEALLOCATE(SPEED)

IF (ALLOCATED(speed)) &

DEALLOCATE(speed , STAT=ierr)

DOT_PRODUCT function

A1 B1

A2 B2

A3 ● B3 c
A4 B4

A5 B5

MATMUL function

x

multiplication operator

*

Practical 3

• Try the questions in practical 3 (or on page 52 of the
notes)

Recap

• Names: a-z,A-Z,0-9

• Must start with a letter

• Implicit none

• integer ::

• real,dimension(100) :: bob

• complex,dimension(-10:1,345) :: claire

• integer,allocatable,dimension(:)::fred

• allocate(fred(100))

• deallocate(fred)

Recap

• fred(10) = 4

• write(*,*) fred(4:12)

• open(12,file=“/home/y14/y14/guest56/files/statas”)

• close(12)

• write(12,*) fred(1)

• do i=1,100

• write(12,*) fred(i)

• end do

Recap

• do

• if(….) exit

• end do

• By default arrays start a 1
• Can modify so start and any number

• real, dimension(-4:10,45:1000)

• Fortran column major
• fred(i,j,k), i is stored contigiously in memory

• So in a loop, i should be inner most loop

• do k=1,100

• do j=1,100

• do i=1,00

• fred(i,j,k) = i+j+k

• ….

Program units

• Fortran has two main program units:

• The main program, which can contain procedures

• A module, which can contain declarations and
procedures

• Modules will be described in the next lecture

Procedures

• There are two types of procedure:

• function: a subprogram returning a result through the
function name

• subroutine: a parameterised, named sub-program
performing a particular task

Procedures

• Written for specific repeated tasks

• Before writing your own, look at available collections
such as the:

• Intrinsics

• NAG Fortran Library

Intrinsic procedures

• Elemental
• mathematical: SIN(x), LOG(x)

• numeric: MAX(x1,x2), CEILING(x)

• character: ADJUSTL(str1)

• Inquiry
• array: ALLOCATED(a), SIZE(a)

• numeric: PRECISION(x), RANGE(x)

• Transformational
• array: RESHAPE(a1,a2), SUM(a)

• Non-elemental
DATE_AND_TIME, SYSTEM_CLOCK

Type conversion functions

• REAL(i) converts the integer type value i to real type

• INT(x) converts the real type value x to integer type (by

truncation)

• NINT(x) returns the integer value nearest to the real
type value x (by rounding)

Main program syntax

[PROGRAM [<main program name>]]

<declaration of local objs>

<executable statements>

[CONTAINS

<internal procedure definitions>]

END [PROGRAM [<main program name>]]

Main program example

PROGRAM Main

IMPLICIT NONE

REAL :: x

READ(*,*) x

WRITE(*,“(F12.4)”) Negative(x)

CONTAINS

! Real function Negative coded here

END PROGRAM Main

Function syntax

[<prefix>] FUNCTION <proc-name> ([<dummy

args>])

<declaration of dummy args>

<declaration of local objs>

<executable statements, assigning result to

proc-name>

END [FUNCTION [<proc-name>]]

Function example

PROGRAM Main

IMPLICIT NONE

! Specification part

! Execution part

CONTAINS

REAL FUNCTION Negative(a)

REAL :: a

INTEGER :: i

Negative = -a

END FUNCTION Negative

END PROGRAM Main

Function example

PROGRAM Main

IMPLICIT NONE

! Specification part

! Execution part

CONTAINS

FUNCTION Negative(a)

REAL :: a, Negative

Negative = -a

END FUNCTION Negative

END PROGRAM Main

Function facts

• A value must be assigned to the function name within the
body of the function

• Side-effects must be avoided. For example do not alter
the value of any argument, do not read or write values.
Use a subroutine if side-effects are unavoidable.

Subroutine syntax

SUBROUTINE <proc-name>[(<dummy args>)]

<declaration of dummy args>

<declaration of local objs>

<executable statements>

END [SUBROUTINE [<proc-name>]]

Subroutine example
PROGRAM Thingy

IMPLICIT NONE
...

CALL OutputFigures(NumberSet)
...

CONTAINS

SUBROUTINE OutputFigures(Numbers)

REAL,DIMENSION(:) :: Numbers

WRITE(*,“(5F12.4)”) Numbers

END SUBROUTINE OutputFigures

END PROGRAM Thingy

Argument association

• In the invocation

CALL OutputFigures(NumberSet)

and the declaration

SUBROUTINE OutputFigures(Numbers)

NumberSet is the actual argument which is argument

associated with the dummy argument Numbers

• Arguments must agree in type

Dummy argument intent

• INTENT(IN) can only be referenced - necessary if

actual argument is a literal

• INTENT(OUT) must be assigned to before use

• INTENT(INOUT) can be referenced and assigned

to

Local objs

REAL FUNCTION Area(x,y,z)

REAL, INTENT(IN) :: x,y,z

REAL :: height, theta ! local object

theta = … ! Use x, y, z

height = … ! Use theta, x, y, z

Area = … ! Use height and y

END FUNCTION Area

Local objs

• are created when procedure invoked

• are destroyed when procedure completes

• do not retain values between calls

SAVE attribute

• Allows local objs to retain their values between procedure
invocations

SUBROUTINE Barmy(arg1,arg2)

REAL, INTENT(IN) :: arg1

REAL, INTENT(OUT) :: arg2

INTEGER :: NumInvocs

NumInvocs = 0

NumInvocs = NumInvocs + 1
...

Scoping rules

• The scope of an entity is the range of program units
where it is visible

• Internal procedures can inherit entities by host
association

• objs declared in modules can be made visible by use
association

Host Association

PROGRAM CalculatePay

INTEGER :: NumberCalcsDone = 0
...

CONTAINS

SUBROUTINE PrintPay(Pay,Tax)

REAL, INTENT(IN) :: Pay, Tax
...

NumberCalcsDone = ... !host assn

END SUBROUTINE PrintPay

END PROGRAM CalculatePay

Use Association

MODULE Tally

INTEGER :: NumberCalcsDone

END MODULE Tally

PROGRAM CalculatePay

USE Tally

REAL :: GrossPay, TaxRate, Delta

...

NumberCalcsDone = ... !use assn

END PROGRAM CalculatePay

Scope of Names

PROGRAM Proggie

REAL :: A, B, C

CALL Sub(A)

CONTAINS

SUBROUTINE Sub(D)

REAL :: D; REAL :: C

B=...; C=...; D=...

END SUBROUTINE Sub

END PROGRAM Proggie

Dummy array arguments

• Two types of dummy array argument:

• Explicit shape – all the bounds are specified. The
actual argument must conform in size and shape.

• Assumed shape – all the bounds are inherited from the
actual argument which must conform in rank

Explicit-shape

REAL, DIMENSION(8,8), INTENT(IN) :: &

expl_shape

• Actual argument must be of type real, have size 64 and
shape 8,8

• In this subprogram the bounds are 1:8,1:8 whatever they
may be in the calling unit

Assumed-shape

REAL, DIMENSION(:,:), INTENT(IN) :: &

assum_shape

• Actual argument here must have rank 2

• In the subprogram the lower bounds are 1 unless another
value is given, whatever they may be in the calling unit

REAL, DIMENSION(0:,0:), &

INTENT(IN) :: assum_shape

• If subroutine not contained in Program and uses assumed
shape arrays Interface is necessary

External function

• An external function is defined outside the body of the
program which uses it. The program needs to inform the
compiler of the type of this function and that it is external.

REAL :: Negative

EXTERNAL :: Negative

REAL, EXTERNAL :: Negative

ftn –o hello hello.f90 bob.f90

ftn –c hello.f90

ftn –c bob.f90

ftn –o hello hello.o bob.o

Compiling Fortran Programs

objs = global.o main.o function1.o subroutine1.o

f90comp = ftn

fflags = -O3

Makefile

execname: $(objs)

$(f90comp) -o execname $(fflags) $(objs)

global.mod: global.o global.f90

$(f90) -c $(fflags) global.f90

global.o: global.f90

$(f90) -c $(fflags) global.f90

main.o: global.mod main.f90

$(f90) -c $(fflags) main.f90

function1.o: global.mod function1.f90

$(f90) -c $(fflags) function1.f90

%.o: %.f90

$(f90) -c $(fflags) $<

Cleaning everything

clean:

rm $(objs) *.mod execname

Makefiles

Practical 4

• Try the questions in practical 4 (or on page 67 of the
notes)

Modules

• Constants and procedures can be encapsulated in

modules for use in one or more programs

Points about modules

• Within a module, functions and subroutines are known as
module procedures

• Module procedures can contain internal procedures

• Module objs can be given the SAVE attribute

• Modules can be USEd by procedures and modules

• Modules must be compiled before the program unit
which uses them.

Module syntax

MODULE module-name

[<declarations and specification statements>]

[CONTAINS

<module-procedures>]

END [MODULE [module-name]]

MODULE Triangle_Operations

IMPLICIT NONE

REAL, PARAMETER :: pi=3.14159

CONTAINS

FUNCTION theta(x,y,z)

...

END FUNCTION theta

FUNCTION Area(x,y,z)

...

END FUNCTION Area

END MODULE Triangle_operations

Module example

Using modules

PROGRAM TriangUser

USE Triangle_Operations

IMPLICIT NONE

REAL :: a, b, c

Restricting visibility

• The visibility of an object declared in a module can be
restricted to that module by giving it the attribute PRIVATE

REAL :: Area, theta

PUBLIC !confirm default

PRIVATE :: theta !restrict

REAL, PRIVATE :: height!restrict

USE rename syntax

USE <module-name> &

[,<new-name> => <use-name>]

Use Rename example

USE Triangle_Operations, &

Space => Area

USE ONLY syntax

USE <module-name> [, ONLY : <only-list>]

Use Triangle_Operations, only : Pi

Use Only example

USE Triangle_operations, ONLY: &

pi, Space => Area

DERIVED types

TYPE COORDS_2D

REAL :: x, y

END TYPE COORDS_2D

!

TYPE(COORDS_2D):: pt1, pt2

Supertypes

TYPE SPHERE

TYPE(COORDS_3D) :: centre

REAL :: radius

END TYPE SPHERE

!

TYPE(SPHERE) :: bubble, ball

Components of an object

• An individual component of a derived type object can be

selected by using the % operator:

pt1%x(10) = 3.0

ball%radius = 1.0

ball%centre%x = 0.0

Whole object assignment

• Use the derived type name as a constructor:

pt1 = COORDS_3D(3.0, 4.0, 5.0)

pt1%x = 3.0

pt1%y = 4.0

pt1%z = 5.0

ball = SPHERE(centre=pt1, radius=5.0)

Input or Output

• Components are accessed in defined order, for example:

ball%centre%x

ball%centre%y

ball%centre%z

ball%radius

True portability

• The range and precision of numeric values are not
defined in the language but are dependent on the
computer system used

• For integers, RANGE(i), and for reals RANGE(x) return

the range of values supported

• For reals, PRECISION(x) returns the precision to which

values are held

Properties of integers

• Integer values are always stored exactly so it is only
necessary to define their range.

• The intrinsic function SELECTED_INT_KIND(<range>)

• returns an integer KIND value which can be used to

declare integers of this kind.

Integers of chosen kind

INTEGER, PARAMETER :: &

ik9 = SELECTED_INT_KIND(9)

INTEGER(KIND=ik9) :: i

• ik9 is non-negative if the desired range of integer
values, -109 < n < 109 can be achieved

Properties of reals

SELECTED_REAL_KIND &

(<precision>,<range>)

• returns an integer KIND value which can be used to

declare reals with the chosen properties

• It returns -1 if the precision cannot be achieved, and -2 if
the range cannot be achieved

Reals of chosen kind

INTEGER, PARAMETER :: &

rk637 = SELECTED_REAL_KIND(6,37)

REAL(KIND=rk637) :: x

Constants and KIND

INTEGER(KIND=ik9) :: I = 7_ik9

REAL(KIND=rk637) :: x = 5.0_rk637

INTEGER(KIND=8) :: I

REAL(KIND=8) :: x

INTEGER*8 I

REAL*8 x

Practical 5

• Try the questions in practical 5 (or on page 77 of the
notes)

Bibliography
Fortran95/2003 explained
Michael Metcalf, John Reid, Malcolm Cohen.
Oxford University Press
ISBN 0 19 852693 8

Fortran 90 Programming
T.M.R.Ellis, Ivor R.Philips, Thomas M.Lahey
Addison-Wesley
ISBN 0-201-54446-6

Fortran 90/95 for Scientists and Engineers
Stephen J.Chapman
McGraw Hill
ISBN 007-123233-8

Summary and useful

information

Access to ARCHER
• Various ways to apply for time on ARCHER

• Standard research grant
• Request Technical Assessment using form on ARCHER website

• Submit completed TA with notional cost in Je-S

• Apply for time for maximum of 2 years

• ARCHER Resource Allocation Panel (RAP)
• Request Technical Assessment using form on ARCHER website

• Submit completed TA with RAP form

• Every 4 months

• Application for computer time only
• Instant Access – Pump-Priming Time

• Request Technical Assessment using form on ARCHER website

• Submit completed TA with 2 page description of work

• see http://www.archer.ac.uk/access/

• All require justification of resources
• Instant Access has the lowest barrier to entry

• designed for exploratory work, e.g. in advance of a full application

• Or take the “ARCHER Driving Test”
• www.archer.ac.uk/training/course-material/online/driving_test.php

• successful completion allows you to apply for an account for 12 months with an allocation of around 80,000
core-hours

• backed up by online training materials

• www.archer.ac.uk/training/course-material/online/

Support and Documentation

Helpdesk

Email support@archer.ac.uk

via ARCHER SAFE http://www.archer.ac.uk/safe

phone: +44 (0)131 650 5000

By post, to:

ARCHER Helpdesk

EPCC

James Clerk Maxwell Building

Peter Guthrie Tait Road

EDINBURGH EH9 3FD

http://www.archer.ac.uk/community/techforum/

http://www.archer.ac.uk/documentation/

Training opportunities
• ARCHER Training (free to academics)

• http://www.archer.ac.uk/training/

• Online sessions (using Blackboard Collaborate)
• Technical Forum meetings (normally15:00 last Wednesday of

month)
• technical presentations of interest to ARCHER users
• http://www.archer.ac.uk/community/techforum/

• Virtual tutorials (normally 15:00 second Wednesday of month)
• opportunity for discussion with ARCHER staff on any topic
• usually starts with a presentation of general interest
• http://www.archer.ac.uk/training/virtual/

• EPCC MSc in HPC (scholarships available)
• http://www.epcc.ed.ac.uk/msc/

Funding calls

• Embedded CSE support

• Through a series of regular calls, Embedded CSE (eCSE) support provides

funding to the ARCHER user community to develop software in a sustainable

manner for running on ARCHER. Funding will enable the employment of a

researcher or code developer to work specifically on the relevant software to

enable new features or improve the performance of the code

• Apply for funding for development effort

• Sixth call currently open

• Latest call just closed (10th May).

• Happen every 4 months

• See http://www.archer.ac.uk for details

Feedback and follow-up

http://www.archer.ac.uk/training/feedback/

You can ask questions at all virtual tutorials

http://www.archer.ac.uk/training/virtual/

