

Introduction to

OpenMP

Lecture 2: OpenMP fundamentals

2

Overview

• Basic Concepts in OpenMP

• History of OpenMP

• Compiling and running OpenMP programs

http://www.epcc.ed.ac.uk/

3

What is OpenMP?

• OpenMP is an API designed for programming shared
memory parallel computers.

• OpenMP uses the concepts of threads and tasks

• OpenMP is a set of extensions to Fortran, C and C++

• The extensions consist of:
– Compiler directives

– Runtime library routines

– Environment variables

http://www.epcc.ed.ac.uk/

4

Directives and sentinels

• A directive is a special line of source code with meaning only

to certain compilers.

• A directive is distinguished by a sentinel at the start of the

line.

• OpenMP sentinels are:

– Fortran: !$OMP

– C/C++: #pragma omp

• This means that OpenMP directives are ignored if the code is

compiled as regular sequential Fortran/C/C++.

http://www.epcc.ed.ac.uk/

5

Parallel region

• The parallel region is the basic parallel construct in OpenMP.

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread

creates a team of threads (fork/join model).

• Every thread executes the statements which are inside the parallel

region

• At the end of the parallel region, the master thread waits for the

other threads to finish, and continues executing the next statements

http://www.epcc.ed.ac.uk/

6

Parallel region

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region

http://www.epcc.ed.ac.uk/

7

Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables.

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible to

other threads.

• A private variable can only be read or written by its own thread.

http://www.epcc.ed.ac.uk/

8

Parallel loops

• In a parallel region, all threads execute the same code

• OpenMP also has directives which indicate that work should be divided

up between threads, not replicated.

– this is called worksharing

• Since loops are the main source of parallelism in many applications,

OpenMP has extensive support for parallelising loops.

• The are a number of options to control which loop iterations are executed

by which threads.

• It is up to the programmer to ensure that the iterations of a parallel loop

are independent.

• Only loops where the iteration count can be computed before the

execution of the loop begins can be parallelised in this way.

http://www.epcc.ed.ac.uk/

9

Synchronisation

• The main synchronisation concepts used in OpenMP are:

• Barrier

– all threads must arrive at a barrier before any thread can proceed past it

– e.g. delimiting phases of computation

• Critical region

– a section of code which only one thread at a time can enter

– e.g.

• Atomic update

– an update to a variable which can be performed only by one thread at a time

– e.g. modification of shared variables

• Master region

– a section of code executed by one thread only

– e.g. initialisation, writing a file

http://www.epcc.ed.ac.uk/

10

Brief history of OpenMP

• Historical lack of standardisation in shared memory directives.

– each hardware vendor provided a different API

– mainly directive based

– almost all for Fortran

– hard to write portable code

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes
most major vendors (and some academic organisations, including
EPCC).

• OpenMP Fortran standard released October 1997, minor revision (1.1)
in November 1999. Major revision (2.0) in November 2000.

http://www.epcc.ed.ac.uk/

11

History (cont.)

• OpenMP C/C++ standard released October 1998. Major revision (2.0) in

March 2002.

• Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.

– no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008

– new features, including tasks, better support for loop parallelism and

nested parallelism

– only recently available in some compilers

• Version 3.1 released in June 2011

– corrections and some minor new features

http://www.epcc.ed.ac.uk/

12

OpenMP resources

• Web site:

 www.openmp.org

– Official web site: language specifications, links to compilers and
tools, mailing lists

• Book:
– “Using OpenMP: Portable Shared Memory Parallel Programming”

Chapman, Jost and Van der Pas, MIT Press, ISBN: 0262533022

– however, does not contain OpenMP 3.0/3.1 features

http://www.epcc.ed.ac.uk/

13

Compiling and running OpenMP programs

• OpenMP is built-in to most of the compilers you are likely to

use.

• To compile an OpenMP program you usually need to add a

(compiler-specific) flag to your compile and link commands.

– -fopenmp for gcc/gfortran

– -openmp for Intel compilers

– no flags for Cray compilers as it is enabled by default

• The number of threads which will be used is determined at

runtime by the OMP_NUM_THREADS environment variable

– set this before you run the program

– e.g. export OMP_NUM_THREADS=4

• Run in the same way you would a sequential program

– type the name of the executable

http://www.epcc.ed.ac.uk/

14

Running

To run an OpenMP program interactively:

• Set the number of threads using the environment variable

OMP_NUM_THREADS

e.g. export OMP_NUM_THREADS=8 (bash/ksh)

or setenv OMP_NUM_THREADS 8 (csh/tcsh)

• Can run just as you would a sequential program.

http://www.epcc.ed.ac.uk/

15

Running in the ARCHER batch system

• ARCHER is configured as a front end (login nodes) and a back
end (compute nodes)

• The frontend is for interactive use, the backend for batch jobs
only. Development and debugging should be done on the
frontend.

• To login in: ssh –X guestXX@login.archer.ac.uk

• Change to the work directory: cd /work/y14/y14/guestXX/

• For performance measurements, run on the backend in a batch
queue (we have reserved queues for courses), e.g.:

 cp –i ompbatch.pbs myprogram.pbs

 qsub –q RXXXXXXX myprogram.pbs

http://www.epcc.ed.ac.uk/

16

Running (cont.)

• The number of threads must be set inside the script file:

 export OMP_NUM_THREADS=4

• On archer, we have to use the job launcher program aprun

– launch a single process on one node

– OpenMP program will spawn multiple threads at runtime

http://www.epcc.ed.ac.uk/

17

Exercise

Hello World

• Aim: to compile and run a trivial program.

• Vary the number of threads using the OMP_NUM_THREADS environment

variable.

• Run the code several times - is the output always the same?

http://www.epcc.ed.ac.uk/

