

Introduction to

OpenMP

Lecture 7: Tasks

2

OpenMP tasks

• The task construct defines a section of code

• Inside a parallel region, a thread encountering a task

construct will package up the task for execution

• Some thread in the parallel region will execute the task at

some point in the future

http://www.epcc.ed.ac.uk/

3

task directive

Syntax:

Fortran:

 !$OMP TASK [clauses]

 structured block

 !$OMP END TASK

C/C++:

 #pragma omp task [clauses]

 structured-block

http://www.epcc.ed.ac.uk/

4

Data Sharing

• The default for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope).

• Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared.

#pragma omp parallel shared(A) private(B)

{

 ...

#pragma omp task

 {

 int C;

 compute(A, B, C);

 }

}

A is shared

B is firstprivate

C is private

http://www.epcc.ed.ac.uk/

5

When/where are tasks complete?

• At thread barriers (explicit or implicit)

– applies to all tasks generated in the current parallel region up to the

barrier

• At taskwait directive

– i.e. Wait until all tasks defined in the current task have completed.

– Fortran: !$OMP TASKWAIT

– C/C++: #pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to

“descendants” .

http://www.epcc.ed.ac.uk/

6

Example

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) {

 process (p);

 p=next(p) ;

}

http://www.epcc.ed.ac.uk/

7

Parallel pointer chasing

#pragma omp parallel

{

 #pragma omp single private(p)

 {

 p = listhead ;

 while (p) {

 #pragma omp task

 process (p);

 p=next (p) ;

 }

 }

}

p is firstprivate by

default inside this

task

Only one thread

packages tasks

http://www.epcc.ed.ac.uk/

8

Parallel pointer chasing on multiple lists

#pragma omp parallel

{

 #pragma omp for private(p)

 for (int i =0; i <numlists ; i++) {

 p = listheads [i] ;

 while (p) {

 #pragma omp task

 process (p);

 p=next (p) ;

 }

 }

}

All threads package

tasks

http://www.epcc.ed.ac.uk/

9

Example: postorder tree traversal

void postorder(node *p) {

 if (p->left)

 #pragma omp task

 postorder(p->left);

 if (p->right)

 #pragma omp task

 postorder(p->right);

 #pragma omp taskwait

 process(p->data);

}

Parent task suspended until

children tasks complete

• Binary tree of tasks

• Traversed using a recursive function

• A task cannot complete until all tasks below it in the tree are complete

http://www.epcc.ed.ac.uk/

10

Task switching

• Certain constructs have task scheduling points at defined

locations within them

• When a thread encounters a task scheduling point, it is

allowed to suspend the current task and execute another

(called task switching)

• It can then return to the original task and resume

http://www.epcc.ed.ac.uk/

11

Task switching

 #pragma omp single

 {

 for (i=0; i<ONEZILLION; i++)

 #pragma omp task

 process(item[i]);

 }

 • Risk of generating too many tasks

• Generating task will have to suspend for a while

• With task switching, the executing thread can:

– execute an already generated task (draining the “task pool”)

– execute the encountered task

http://www.epcc.ed.ac.uk/

12

Using tasks

• Getting the data attribute scoping right can be quite tricky

– default scoping rules different from other constructs

– as ever, using default(none) is a good idea

• Don’t use tasks for things already well supported by OpenMP

– e.g. standard do/for loops

– the overhead of using tasks is greater

• Don’t expect miracles from the runtime

– best results usually obtained where the user controls the

number and granularity of tasks

http://www.epcc.ed.ac.uk/

13

Exercise

• Mandelbrot example using tasks.

http://www.epcc.ed.ac.uk/

