

Introduction to

 OpenMP

Lecture 9: Performance tuning

2

Sources of overhead

• There are 6 main causes of poor performance in shared memory parallel

programs:

– sequential code

– communication

– load imbalance

– synchronisation

– hardware resource contention

– compiler (non-)optimisation

• We will take a look at each and discuss ways to address them

http://www.epcc.ed.ac.uk/

3

Sequential code

• Amount of sequential code will limit performance (Amdahl’s Law)

• Need to find ways of parallelising it!

• In OpenMP, all code outside parallel regions, and inside MASTER,

SINGLE and CRITICAL directives is sequential - this code should be as

as small as possible.

http://www.epcc.ed.ac.uk/

4

Communication

• On shared memory machines, communication is “disguised”

as increased memory access costs - it takes longer to

access data in main memory or another processors cache

than it does from local cache.

• Memory accesses are expensive! (~300 cycles for a main

memory access compared to 1-3 cycles for a flop).

• Communication between processors takes place via the

cache coherency mechanism.

• Unlike in message-passing, communication is spread

throughout the program. This makes it much harder to

analyse or monitor.

http://www.epcc.ed.ac.uk/

5

Data affinity

• Data will be cached on the processors which are accessing

it, so we must reuse cached data as much as possible.

• Try to write code with good data affinity - ensure that the

same thread accesses the same subset of program data as

much as possible.

• Also try to make these subsets large, contiguous chunks of

data (avoids false sharing)

http://www.epcc.ed.ac.uk/

6

Data affinity (cont)

Example:

!$OMP DO PRIVATE(I)

 do j = 1,n

 do i = 1,n

 a(i,j) = i+j

 end do

 end do

!$OMP DO SCHEDULE(STATIC,16) PRIVATE(I)

 do j = 1,n

 do i = 1,j

 b(j) = b(j) + a(i,j)

 end do

 end do

Different access patterns

for a will result in

additional cache misses

http://www.epcc.ed.ac.uk/

7

Data affinity (cont)

Example:

!$OMP PARALLEL DO

 do i = 1,n

 ... = a(i)

 end do

 a(:) = 26.0

!$OMP PARALLEL DO

 do i = 1,n

 ... = a(i)

 end do

a will be spread across

multiple caches

Sequential code!

 a will be gathered into

one cache

a will be spread across

multiple caches again

http://www.epcc.ed.ac.uk/

8

Data affinity (cont.)

• Sequential code will take longer with multiple threads than it

does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional

cache misses

• May need to parallelise code which does not appear to take

much time in the sequential program.

http://www.epcc.ed.ac.uk/

9

Data affinity: NUMA effects

• On distributed shared memory (cc-NUMA) systems, the

location of data in main memory is important.

– Note: all current multi-socket x86 systems are cc-NUMA!

• OpenMP has no support for controlling this (and there is still

a debate about whether it should or not!).

• Default policy for the OS is to place data on the processor

which first accesses it (first touch policy).

• For OpenMP programs this can be the worst possible option

– data is initialised in the master thread, so it is all allocated one node

– having all threads accessing data on the same node become a

bottleneck

http://www.epcc.ed.ac.uk/

10

• In some OSs, there are options to control data placement

– e.g. in Linux, can use numactl change policy to round-robin

• First touch policy can be used to control data placement

indirectly by parallelising data initialisation

– even though this may not seem worthwhile in view of the insignificant

time it takes in the sequential code

• Don’t have to get the distribution exactly right

– some distribution is usually much better than none at all.

• Remember that the allocation is done on an OS page basis

– typically 4KB to 16KB

– beware of using large pages!

http://www.epcc.ed.ac.uk/

11

False sharing

• Worst cases occur where different threads repeated write neighbouring

array elements

Cures:

1. Padding of arrays. e.g.:

 integer count(maxthreads)

!$OMP PARALLEL

 . . .

 count(myid) = count(myid) + 1

becomes

 parameter (linesize = 16)

 integer count(linesize,maxthreads)

!$OMP PARALLEL

 . . .

 count(1,myid) = count(1,myid) + 1

http://www.epcc.ed.ac.uk/

12

False sharing (cont)

2. Watch out for small chunk sizes in unbalanced loops e.g.:

!$OMP DO SCHEDULE(STATIC,1)

 do j = 1,n

 do i = 1,j

 b(j) = b(j) + a(i,j)

 end do

 end do

may induce false sharing on b.

http://www.epcc.ed.ac.uk/

13

Load imbalance

• Note that load imbalance can arise from imbalances in communication as

well as in computation.

• Experiment with different loop scheduling options - use

SCHEDULE(RUNTIME).

• If none of these are appropriate, don’t be afraid to use a parallel region

and do your own scheduling (it’s not that hard!). e.g. an irregular block

schedule might be best for some triangular loop nests.

• For more irregular computations, using tasks can be helpful

– runtime takes care of the load balancing

http://www.epcc.ed.ac.uk/

14

Load imbalance (cont)

!$OMP PARALLEL DO SCHEDULE(STATIC,16) PRIVATE(I)

 do j = 1,n

 do i = 1,j

 . . .

becomes

!$OMP PARALLEL PRIVATE(LB,UB,MYID,I)

 myid = omp_get_thread_num()

 lb = int(sqrt(real(myid*n*n)/real(nthreads)))+1

 ub = int(sqrt(real((myid+1)*n*n)/real(nthreads)))

 if (myid .eq. nthreads-1) ub = n

 do j = lb, ub

 do i = 1,j

 . . .

http://www.epcc.ed.ac.uk/

15

Synchronisation

• Barriers can be very expensive (typically 1000s to 10000s of

clock cycles).

• Careful use of NOWAIT clauses.

• Parallelise at the outermost level possible.

– May require reordering of loops and/or array indices.

• Choice of CRITICAL / ATOMIC / lock routines may have

performance impact.

http://www.epcc.ed.ac.uk/

16

NOWAIT clause

• The NOWAIT clause can be used to suppress the implicit barriers at the

end of DO/FOR, SECTIONS and SINGLE directives.

Syntax:

Fortran: !$OMP DO

 do loop

 !$OMP END DO NOWAIT

C/C++: #pragma omp for nowait

 for loop

• Similarly for SECTIONS and SINGLE.

http://www.epcc.ed.ac.uk/

17

NOWAIT clause (cont)

Example: Two loops with no dependencies

!$OMP PARALLEL

!$OMP DO

 do j=1,n

 a(j) = c * b(j)

 end do

!$OMP END DO NOWAIT

!$OMP DO

 do i=1,m

 x(i) = sqrt(y(i)) * 2.0

 end do

!$OMP END PARALLEL

http://www.epcc.ed.ac.uk/

18

NOWAIT clause

• Use with EXTREME CAUTION!

• All too easy to remove a barrier which is necessary.

• This results in the worst sort of bug: non-deterministic behaviour

(sometimes get right result, sometimes wrong, behaviour changes under

debugger, etc.).

• May be good coding style to use NOWAIT everywhere and make all

barriers explicit.

http://www.epcc.ed.ac.uk/

19

NOWAIT clause (cont)

Example:

!$OMP DO SCHEDULE(STATIC,1)

 do j=1,n

 a(j) = b(j) + c(j)

 end do

!$OMP DO SCHEDULE(STATIC,1)

 do j=1,n

 d(j) = e(j) * f

 end do

!$OMP DO SCHEDULE(STATIC,1)

 do j=1,n

 z(j) = (a(j)+a(j+1)) * 0.5

 end do

Can remove the first

barrier, or the second,

but not both, as there is
a dependency on a

http://www.epcc.ed.ac.uk/

20

Hardware resource contention

• The design of shared memory hardware is often a cost vs.

performance trade-off.

• There are shared resources which, if all cores try to access

them at the same time, do not scale

– or, put another way, an application running on a single code can

access more than its fair share of the resources

• In particular, OpenMP threads can contend for:

– memory bandwidth

– cache capacity

– functional units (if using SMT)

http://www.epcc.ed.ac.uk/

21

Memory bandwidth

• Codes which are very bandwidth-hungry will not scale

linearly on most shared-memory hardware

• Try to reduce bandwidth demands by improving locality, and

hence the re-use of data in caches

– will benefit the sequential performance as well.

http://www.epcc.ed.ac.uk/

22

Cache space contention

• On systems where cores share some level of cache, codes

may not appear to scale well because a single core can

access the whole of the shared cache.

• Beware of tuning block sizes for a single thread, and then

running multithreaded code

– each thread will try to utilise the whole cache

http://www.epcc.ed.ac.uk/

23

SMT

• When using SMT, threads running on the same core contend

for functional units as well as cache space and memory

bandwidth.

• SMT tends to benefit codes where threads are idle because

they are waiting on memory references

– code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the

floating point units (e.g. dense linear algebra) may not

benefit from SMT

– might run slower

http://www.epcc.ed.ac.uk/

24

Compiler (non-)optimisation

• Sometimes the addition of parallel directives can inhibit the compiler from

performing sequential optimisations.

• Symptoms: 1-thread parallel code has longer execution time and higher

instruction count than sequential code.

• Can sometimes be cured by making shared data private, or local to a

routine.

http://www.epcc.ed.ac.uk/

25

Minimising overheads

My code is giving poor speedup. I don’t know why.

What do I do now?

1.

– Say “this machine/language is a heap of junk”.

– Give up and go back to your workstation/PC.

2.

– Try to classify and localise the sources of overhead.

– What type of problem is it, and where in the code does it occur?

– Use any available tools to help you (e.g. timers, hardware counters,

profiling tools).

– Fix problems which are responsible for large overheads first.

– Iterate.

http://www.epcc.ed.ac.uk/

26

Practical Session

Performance tuning

• Use a profiling tool to classify and estimate overheads.

• Work with a not very efficient implementation of the Molecular Dynamics

example.

http://www.epcc.ed.ac.uk/

