
Batch Systems
Running your jobs on an HPC machine

Outline
• What are batch systems?
• Why are they needed?
• How to run jobs on an HPC machine via a batch system:

•  Concepts
•  Resource scheduling and job execution
•  Job submission scripts
•  Interactive jobs

• Scheduling
• Best practice
• Common batch systems

•  Converting between different batch systems

Batch Systems
What are they and why do we need them?

What is a batch system?
• Mechanism to control access by many users to shared

computing resources

• Queuing / scheduling system for users’ jobs

• Manages the reservation of resources and job execution

• Allows users to “fire and forget” large, long calculations or
many jobs (“production runs”)

Why do we need a batch system?
• Ensure all users get a fair share of compute resources

(demand usually exceeds supply)

•  To ensure the machine is utilised as efficiently as possible

•  To track usage - for accounting and budget control

•  To mediate access to other resources e.g. software
licences

How to use a batch system
1. Set up a job, consisting of:

•  Commands that run one or more calculations / simulations
•  Specification of compute resources needed to do this

2. Submit your job to the batch system

•  Job is placed in a queue by the scheduler
•  Will be executed when there is space and time on the machine
•  Job runs until it finishes successfully, is terminated due to errors, or

exceeds a time limit

3. Examine outputs and any error messages

Batch system flow

Write	
Job	 Script	

Job	
Queued	

Job	
Executes	

Job	
Finished	

Allocated	
Job	 ID	

Output	
Files	 	

(&	 Errors)	

Status	

Job	 Submit	
Command	

Job	 Delete	
Command	

Job	 Status	
Command	

Resource scheduling & job execution
•  When you submit a job to a batch system you specify the

resources it requires (number of nodes / cores, job time, etc.)

•  The batch system schedules a block of resources that meet
these requirements to become available for your job to use

•  When it runs, your job can use these resources however it likes

(specified in advance in your job script):
•  Run a single calculation / simulation that spans all cores and full time
•  Run multiple shorter calculations / simulations in sequence
•  Run multiple smaller calculations / simulations running in parallel for

the full time

• Queue – a logical scheduling category that may correspond
to a portion of the machine:
•  Different time constraints
•  Nodes with special features such as large memory, different processor

architecture or accelerators such as GPUs, etc.
•  Nodes reserved for access by a subset of users (e.g. for training)
•  Generally have a small number of defined queues
•  Jobs contend for resources within the queue in which they sit

Batch system concepts

Queues on ARCHER
•  “standard” queue: 24 hour limit, up to ~4000 nodes
•  “short” queue: max 20 minutes, up to 8 nodes, available weekdays

09:00-20:00 only
•  “long” queue: 48 hour limit, up to ~900 nodes
•  “largemem” queue: 48 hour limit, up to ~ 400 nodes, 128GB RAM
•  “serial” queue

• Priority – numerical ranking of a job by the scheduler that
influences how soon it will start (higher priority more likely to
start sooner)

• Account name / budget code – identifier used to charge (£)
time used
•  Jobs may be rejected when you submit with insufficient budget

• Walltime – the time a job takes (or is expected to take)

Batch system concepts

Using Batch Systems
Command and examples

Batch system commands & job states

PBS (ARCHER) SLURM
Job submit command qsub myjob.pbs sbatch myjob_sbatch
Job status command qstat –u $USER squeue –u $USER
Job delete command qdel ######## scancel ########

PBS job state (ARCHER) Meaning
Q The job is queued and waiting to start
R The job is currently running
E The job is currently exiting
H The job is held and not eligible to run

Parallel application launcher commands

Use these commands inside a job script to launch a parallel
executable

Parallel application launcher commands
aprun –n 48 –N 12 –d 2 my_program (ARCHER)
mpirun –ppn 12 –np 48 my_program
mpiexec –n 48 my_program

Job submission scripts
PBS example:

#!/bin/bash --login
#PBS -N Weather1
#PBS -l select=200
#PBS -l walltime=1:00:00
#PBS –q short
cd $PBS_O_WORKDIR
aprun –n 4800 weathersim

Parallel job launcher

Requested job duration

Changing to directory to run in

Number of nodes requested

Job name

Linux shell to run job script in

Number of parallel

instances of program

to launch

Queue to submit job to

Program name

Job submission scripts
SLURM example:

#!/bin/bash
#SBATCH –J Weather1
#SBATCH --nodes=2
#SBATCH --time=12:00:00
#SBATCH --ntasks=24
#SBATCH –p tesla
mpirun –np 24 weathersim

Parallel job launcher

Requested job duration

Number of nodes requested

Job name

Linux shell to run job script in

Number of parallel

instances of program

to launch

Number of parallel tasks

Program name

Queue to submit job to (GPU queue)

Interactive jobs
Testing, development and visualisation

Interactive jobs
• Most HPC machines allow both batch and interactive jobs

• Batch jobs are non-interactive.
•  You write a job submission script to run your job
•  Jobs run without user intervention and you collect results at the end

•  Interactive jobs allow you to use compute resources
interactively
•  For testing, debugging/profiling, software development work
•  For visualisation and data analysis

• How these are set up and charged varies from machine to
machine

Interactive jobs
•  If using the same compute resource as batch jobs then

need to request an interactive job from the batch
scheduler
•  Use same resource request variables as for batch jobs (duration,

size, queue, etc.):

qsub -I –l select=1,walltime=0:10:0 –A y14 –q short

•  Wait until job runs to get an interactive terminal session
•  Within interactive session run serial code or parallel programs

using parallel launcher (aprun, mpirun, etc.) as for batch jobs

Interactive jobs
• May have a small part of the HPC machine dedicated to

interactive jobs
•  Typically for visualisation & postprocessing / data analysis
•  May bypass the batch scheduler for instant access (serial nodes on

ARCHER)
•  May be limited in performance, available libraries, parallelism, etc.

Scheduling
How does the scheduler decide which job to run when?

Scheduling
•  Complex scheduling algorithms try to run many jobs of different

sizes on system to ensure
•  maximum utilisation
•  minimum wait time

•  Batch schedulers can be configured to implement scheduling
policy that varies from machine to machine, allowing control
over the relative importance to job prioritisation of:
•  Waiting times
•  Large vs small jobs
•  Long vs short jobs
•  Power consumption
•  Some other metric ….

Scheduling
•  Backfilling strategy in scheduling algorithms:

•  Assign all jobs priority according to policy
•  If you have a high priority job A that can not currently run given available

resources, calculate when the required resources will become available and
schedule A to run at that future time.

•  Until such time, run any less high priority jobs that will complete before job A starts
and for which sufficient resources are currently available

•  This “fills gaps” and improves resource utilisation

•  Scheduling algorithms are an active area of research

http://archer.ac.uk/status/

•  How long until my job executes?

Scheduling Coefficient
Scheduling coefficient = runtime / (runtime + queuedtime)

Statistics over last year:

Best Practice
Tips for using HPC batch systems

Best practice
•  Run short tests using interactive jobs if possible (firing off large

jobs without first testing may burn resources without producing
good results)

•  Once you are happy the setup works write a short test job
script and submit it to the batch system (e.g. to short queue)

•  Finally, produce scripts for full production runs
•  Remember you have the full functionality of the Linux

command line (bash or other) available in scripts
•  This allows for sophisticated scripts if you need them
•  Can automate a lot of tedious data analysis and transformation
•  …be careful to test when moving, copying deleting important data – it

is very easy to lose the results of a large simulation due to a typo (or
unforeseen error) in a script

Migrating
Changing your scripts from one batch system to another

Batch systems
• PBS (on ARCHER), Torque
• Grid Engine
• SLURM
•  LSF – IBM Systems
•  LoadLeveller – IBM Systems

Conversion
• Usually need to change the batch system options
• Sometimes need to change the commands in the script

•  Particularly to different paths
•  Usually the order (logic) of the commands remains the same

•  There are some utilities that can help
•  Bolt – from EPCC, generates job submission scripts for a variety of

batch systems/HPC resources: https://github.com/aturner-epcc/bolt

Summary

Summary
• Batch systems exist to manage access to shared

resources on HPC systems and maximise utilisation
• Allow users to submit jobs and go and do other things

while they queue and run
•  No need to stay logged in or monitor your jobs

•  There are a number of different batch systems
•  But they all work in broadly the same way
•  Usually request resources using batch syntax…
•  … then specify how to use resources using parallel job launcher

• Complex scheduling algorithms maximise resource
utilisation according to policy

