

Advanced OpenMP

Other APIs

What’s wrong with OpenMP?

•  OpenMP is designed for programs where you want a fixed
number of threads, and you always want the threads to be
consuming CPU cycles.
–  cannot arbitrarily start/stop threads
–  cannot put threads to sleep and wake them up later

•  OpenMP is good for programs where each thread is doing
(more-or-less) the same thing.

•  Although OpenMP supports C++, it’s not especially OO
friendly
–  though it is gradually getting better.

•  OpenMP doesn’t support Java

What’s wrong with Java threads?

•  Lacks some of the higher level functionality of OpenMP

•  Performance of Java may not match that of Fortran or C

•  OO model doesn’t suit some types of scientific computation
very well

•  Some HPC systems don’t support Java
–  there is no standardised interface for message passing in Java

What are the alternatives?

•  POSIX threads

•  C++ threads

•  Intel TBB

•  Cilk

•  OpenCL

(not an exhaustive list!)

POSIX threads

•  POSIX threads (or Pthreads) is a standard library for shared
memory programming without directives.
–  Part of the ANSI/IEEE 1003.1 standard (1996)

•  Interface is a C library
–  no standard Fortran interface
–  can be used with C++, but not OO friendly

•  Widely available
–  even for Windows
–  typically installed as part of OS
–  code is pretty portable

•  Lots of low-level control over behaviour of threads

•  Execution model similar to Java threads

Thread forking

#include <pthread.h>

int pthread_create(

 pthread_t *thread,

 const pthread_attr_t *attr,

 void*(*start_routine, void*),

 void *arg)

•  Creates a new thread:
–  first argument returns a pointer to a thread descriptor.
–  can set attributes.
–  new thread will execute start_routine(arg)
–  return value is error code.

Thread joining

#include <pthread.h>

int pthread_join(

 pthread_t thread,

 void **value_ptr)

•  Waits for the specified thread to finish.
–  thread finishes when start_routine exits
–  second argument holds return value from start_routine

Synchronisation

•  Barriers

•  Mutex locks
–  Behaviour is essentially the same as the OpenMP lock routines.

•  Condition variables
–  Behaviour is essentially the same as wait/notify in Java

Hello World

#include <pthread.h>

#define NTHREADS 5

int i, threadnum[NTHREADS];

pthread_t tid[NTHREADS];

for (i=0; i<NTHREADS; i++) {

 threadnum[i]=i;

 pthread_create(&tid[i], NULL, hello, &threadnum[i]);

}

for (i=0; i<NTHREADS; i++)

 pthread_join(tid[i], NULL);

Hello World (cont.)

void* hello (void *arg) {

 int myid;

 myid = *(int *)arg;

 printf(“Hello world from thread %d\n”, myid);

 return (0);

}

C++11 threads

•  Library for multithreaded programming built in to C++11
standard

•  Similar functionality to POSIX threads
–  but with a proper OO interface
–  based quite heavily on BOOST threads library

•  Portable
–  depends on C++11 support, OK in gcc, Intel, clang, MS

•  Threads are C++ objects

•  Synchronisation
–  mutex locks
–  condition variables
–  C++11 atomics

Hello world

#include <thread>

#include <iostream>

#include <vector>

void hello(){

 std::cout << "Hello from thread " << std::this_thread::get_id() <<
std::endl;

}

int main(){

 std::vector<std::thread> threads;

 for(int i = 0; i < 5; ++i){

 threads.push_back(std::thread(hello));

 }

 for(auto& thread : threads){

 thread.join();

 }

}

Intel Thread Building Blocks (TBB)

•  C++ library for multithreaded programming

•  Offers somewhat higher level of abstraction that POSIX/C+
+11 threads
–  notion of tasks rather that explicit threads
–  support for parallel loops and reductions
–  support for concurrency on containers

•  Moderately portable
–  support for Intel and gcc compilers on Linux and Mac OS X, Intel and

Visual C++ on Windows
–  no build required to install

Hello World
 #include <iostream>

#include <tbb/parallel_for.h>

using namespace tbb;

class Hello
{
public:
void operator()(int x) const {
std::cout << "Hello world\n";
}
};

int main()
{
// parallelizing:
// for(int i = 0; i < 2; ++i) { ... }
parallel_for(0, 2, 1, Hello());

return 0;
}

Cilk

•  Very minimal API which supports spawning and joining of
tasks
–  C/C++ with a few extra keywords

•  Commercial implementation by Intel
–  Intel Cilk Plus, built in to Intel C++ compiler
–  not very portable

•  Support for parallel loops and reductions
–  No locks, but can use pthread or TBB mutexes.

•  Still unclear whether it is really useful for real-world
applications!

Hello World

#include <stdio.h>

#include <cilk/cilk.h>

static void hello(){

 printf("Hello ");

}

int main(){

 cilk_spawn hello();

 cilk_sync;

}

OpenCL

•  API designed for programming heterogeneous systems
(GPUs, DSPs, etc).
–  but can also execute on regular CPUs

•  Open standard administered by Khronos Group

•  Based on C99 with some extra keywords, large set of
runtime library routines

•  CPU implementations from Intel, IBM

•  Very low level (c.f. CUDA), lots of boiler-plate code required

•  Performance (and performance portability) not convincingly
demonstrated....

Hello World

__kernel void hello(__global char* string)

{

string[0] = 'H';

string[1] = 'e';

string[2] = 'l';

string[3] = 'l';

string[4] = 'o';

string[5] = ',';

string[6] = ' ';

string[7] = 'W';

string[8] = 'o';

string[9] = 'r';

string[10] = 'l';

string[11] = 'd';

string[12] = '!';

string[13] = '\0';

}

#include <stdio.h>

#include <stdlib.h>

#include <CL/cl.h>

#define MEM_SIZE (128)

#define MAX_SOURCE_SIZE (0x100000)

int main()

{

cl_device_id device_id = NULL;

cl_context context = NULL;

cl_command_queue command_queue = NULL;

cl_mem memobj = NULL;

cl_program program = NULL;

cl_kernel kernel = NULL;

cl_platform_id platform_id = NULL;

cl_uint ret_num_devices;

cl_uint ret_num_platforms;

cl_int ret;

char string[MEM_SIZE];

FILE *fp;

char fileName[] = "./hello.cl";

char *source_str;

size_t source_size;

 /* Load the source code containing

the kernel*/

fp = fopen(fileName, "r");

if (!fp) {

fprintf(stderr, "Failed to load

kernel.\n");

exit(1);

}

source_str =

(char*)malloc(MAX_SOURCE_SIZE);

source_size = fread(source_str, 1,

MAX_SOURCE_SIZE, fp);

fclose(fp);

/* Get Platform and Device Info */

ret = clGetPlatformIDs(1,

&platform_id, &ret_num_platforms);

ret = clGetDeviceIDs(platform_id,

CL_DEVICE_TYPE_DEFAULT, 1, &device_id,

&ret_num_devices);

/* Create OpenCL context */

context = clCreateContext(NULL, 1,

&device_id, NULL, NULL, &ret);

/* Create Command Queue */

command_queue =

clCreateCommandQueue(context,

device_id, 0, &ret);

/* Create Memory Buffer */

memobj = clCreateBuffer(context,

CL_MEM_READ_WRITE,MEM_SIZE *

sizeof(char), NULL, &ret);

/* Create Kernel Program from the

source */

program =

clCreateProgramWithSource(context, 1,

(const char **)&source_str,

(const size_t *)&source_size, &ret);

 /* Create OpenCL context */

context = clCreateContext(NULL, 1,

&device_id, NULL, NULL, &ret);

/* Create Command Queue */

command_queue =

clCreateCommandQueue(context,

device_id, 0, &ret);

/* Create Memory Buffer */

memobj = clCreateBuffer(context,

CL_MEM_READ_WRITE,MEM_SIZE *

sizeof(char), NULL, &ret);

/* Create Kernel Program from the

source */

program =

clCreateProgramWithSource(context, 1,

(const char **)&source_str,

(const size_t *)&source_size, &ret);

/* Build Kernel Program */

ret = clBuildProgram(program, 1,

&device_id, NULL, NULL, NULL);

/* Create OpenCL Kernel */

kernel = clCreateKernel(program,

"hello", &ret);

/* Set OpenCL Kernel Parameters */

ret = clSetKernelArg(kernel, 0,

sizeof(cl_mem), (void *)&memobj);

/* Execute OpenCL Kernel */

ret = clEnqueueTask(command_queue,

kernel, 0, NULL,NULL);

/* Copy results from the memory buffer

*/

ret =

clEnqueueReadBuffer(command_queue,

memobj, CL_TRUE, 0,

MEM_SIZE * sizeof(char),string, 0,

NULL, NULL);

/* Display Result */

puts(string);

/* Finalization */

ret = clFlush(command_queue);

ret = clFinish(command_queue);

ret = clReleaseKernel(kernel);

ret = clReleaseProgram(program);

ret = clReleaseMemObject(memobj);

ret =

clReleaseCommandQueue(command_queue);

ret = clReleaseContext(context);

free(source_str);

return 0;

}

