NATURAL
ENVIRONMENT E PS R‘
RESEARCH COUNCIL

Introduction to OpenMP

Lecture 8: Memory model

o 1 VE'?;\
N ~7 1@
O - T
N 4 Y
6‘0 0Q~
IN®

Why do we need a memory model?

On modern computers code is rarely executed in the same
order as it was specified in the source code.

Compilers, processors and memory systems reorder code to
achieve maximum performance.

Individual threads, when considered in isolation, exhibit as-if-
serial semantics.

Programmer’s assumptions based on the memory model
hold even in the face of code reordering performed by the
compiler, the processors and the memory.

epCcc

((/
<
~
o
<

e
Example

Reasoning about multithreaded execution is not that simple.

T1l T2

x=1; 1nt rl=y;

yv=1; 1nt r2=x;
If there is no reordering and T2 sees value of y on read to be
1 then the following read of x should also return the value 1.

If code in T1 is reordered we can no longer make this
assumption.

epCcc

((/
<
~
o
<

e
OpenMP Memory Model

OpenMP supports a relaxed-consistency shared
memory model.

Threads can maintain a temporary view of shared memory
which is not consistent with that of other threads.

These temporary views are made consistent only at certain
points in the program.

The operation which enforces consistency is called the flush
operation

epCcc

< s,
RS A
N X7
o
<

COTNDS

e
Flush operation

Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory

All previous read/writes by this thread have completed and are visible to
other threads

No subsequent read/writes by this thread have occurred
A flush operation is analogous to a fence in other shared memory API’s

epCcc

e
Flush and synchronization

A flush operation is implied by OpenMP synchronizations, e.g.
at entry/exit of parallel regions
at implicit and explicit barriers
at entry/exit of critical regions
whenever a lock is set or unset

(but not at entry to worksharing regions or entry/exit of master regions)

Note: using the volatile qualifier in C/C++ does not give
sufficient guarantees about multithreaded execution.

epCcc

- 00
Example: producer-consumer pattern

Thread 0 Thread 1

a = foo(); while (!flag);
flag = 1; b = a;

This is incorrect code

The compiler and/or hardware may re-order the reads/writes to a
and flag, or flag may be held in a register.

OpenMP has a flush directive which specifies an explicit flush
operation

can be used to make the above example work

epCcc

< s,
RS A
N X7
o
<

COTNDS

I
Using flush

In order for a write of a variable on one thread to be
guaranteed visible and valid on a second thread, the
following operations must occur in the following order:

Thread A writes the variable
Thread A executes a flush operation
Thread B executes a flush operation
Thread B reads the variable

epCcc

Example: producer-consumer pattern

Thread 0
a = foo();
#pragma omp flush
flag = 1;
#pragma omp flush

First flush ensures £lag
IS written after a

Second flush ensures
flag is written to

memory

Thread 1
#pragma omp flush
while (!flag) {
#pragma omp flush
}
#pragma omp flush
b = a;

First and second flushes
ensure £lag Is read
from memory

Third flush ensures
correct ordering of

flushes
epCC

((/
<
~
o
<

I
Using flush

Using flush correctly is difficult and prone to subtle bugs
extremely hard to test whether code is correct
may execute correctly on one platform/compiler but not on another

bugs can be triggered by changing the optimisation level on the
compiler

Don’t use it unless you are 100% confident you know what
you are doing!
and even then......

epCcc

