NATURAL
ENVIRONMENT E P S R‘
RESEARCH COUNCIL

Introduction to OpenMP

Lecture 10: Caches

Salls
i pEiq K
N £5 8

DN

Overview

Why caches are needed
How caches work

Cache design and performance.

epCceC

>
Qfo 7 | 8
3 A
5

o

e
The memory speed gap

Moore’s Law: processors speed doubles every 18 months.
True for last 35 years....

Memory speeds (DRAM) are not keeping up (double every 5
years) .

In 1980, both CPU and memory cycles times were around 1

microsecond.
Floating point add and memory load took about the same time.

In 2000 CPU cycles times were around 1 nanosecond,

memory cycle times around 100 nanoseconds.
Memory load is 2 orders of magnitude more expensive than floating point

' epce

.
N ~7 |
2
-
S

-

I
Principal of locality

Almost every program exhibits some degree of locality.
Tend to reuse recently accessed data and instructions.

Two types of data locality:

1. Temporal locality

A recently accessed item is likely to be reused in the near future.
e.g. if x is read now, it is likely to be read again, or written, soon.

2. Spatial locality

ltems with nearby addresses tend to be accessed close together in
time.

e.g.ify[ilisread now, y[i+1] is likely to be read soon.

epce

< 2y
R
~
-~
o}
P

-
What is cache memory?

Small, fast, memory.
Placed between processor and main memory.

Processor

Cache Memory

Main Memory

epCceC

>
Qfo 7 | 8
3 A
5

o

-
How does this help?

Cache can hold copies of data from main memory
locations.

Can also hold copies of instructions.

Cache can hold recently accessed data items for fast re-
access.

Fetching an item from cache is much quicker than fetching
from main memory.
1 nanosecond instead of 100.

For cost and speed reasons, cache is much smaller than
main memory.

epCceC

>
Qfo 7 | 8
3 A
-

o

-
Blocks

A cache block is the minimum unit of data which can be
determined to be present in or absent from the cache.

Normally a few words long: typically 32 to 128 bytes.
See later for discussion of optimal block size.

N.B. a block is sometimes also called a line.

epCceC

>
Qfo 7 | 8
3 A
-

o

-
Design decisions

When should a copy of an item be made in the cache?
Where is a block placed in the cache?

How is a block found in the cache?

Which block is replaced after a miss?

What happens on writes?

Methods must be simple (hence cheap and fast to
implement in hardware).

epCceC

5
Qfo 7 ¢
2 o
-
P

.
When to cache?

Always cache on reads
except in special circumstances

If a memory location is read and there isn’t a copy In the
cache (read miss), then cache the data.

What happens on writes depends on the write strategy:
see later.

N.B. for instruction caches, there are no writes

epce

>
Qfo 7 | 8
3 A
-

o

.
Where to cache?

Cache is organised in blocks
Each block has a number:

«— 32bytes —

0
1

2
3

4

epCceC

»
Qfo 7 | &
3 o
o
-

Bit selection

Simplest scheme is a direct mapped cache

If we want to cache the contents of an address, we ignore
the last n bits where 27 is the block size.

Block number (index) is:

(remaining bits) MOD (no. of blocks in cache)
next m bits where 2™ is number of blocks.

Full address

01110011101011101 | 0110011100 | 10100

block block

Index offset

epCcC

5
Qfo 7 ¢
2 o
-
o

Set associativity

Cache is divided into sets
A set is a group of blocks (typically 2 or 4)
Compute set index as:

(remaining bits) MOD (no. of sets in cache)
Data can go into any block in the set.

Full address

011100111010111010| 110011100 10100

set block
Index offset

epCce

-
Set associativity

If there are k blocks in a set, the cache is said to be k-way
set associative. +—— 32bytes —

il

511
If there is just one set, the cache is fully associative

epce

5
Qfo 7 | &
& -
o
-

How to find a cache block

Whenever we load an address, we have to check whether it is
cached.

For a given address, find set where it might be cached.
Each block has an address tag.

address with the block index and block offset stripped off.
Each block has a valid bit.

if the bit is set, the block contains a valid address

Need to check tags of all valid blocks in set for target address.
« Full address >

011100111010111010| 110011100 10100

set block
Index offset

epCceC

tag

N ~7 |
2
o

S

o

e
Which block to replace?

In a direct mapped cache there is no choice: replace the
selected block.

In set associative caches, two common strategies:

Random
Replace a block in the selected set at random.

Least recently used (LRU)

Replace the block in set which was unused for longest time.

LRU is better, but harder to implement.

epCceC

>
Qfo 7 | 8
3 A
-

o

-
What happens on write?

Writes are less common than reads.
Two basic strategies:

Write through
Write data to cache block and to main memory.
Normally do not cache on miss.

Write back

Write data to cache block only. Copy data back to main memory only when
block is replaced.

Dirty/clean bit used to indicate when this is necessary.
Normally cache on miss.

epCceC

Asz ST
~
~
o]
4

-
Write through vs. write back

With write back, not all writes go to main memory.
reduces memory bandwidth.
harder to implement than write through.

With write through, main memory always has valid copy.

useful for 1/0O and for some implementations of multiprocessor cache
coherency.

can avoid CPU waiting for writes to complete by use of write buffer.

< 2y
R
~
-~
o}
P

epCceC

.
Cache performance

Average memory access cost =
hit time + miss ratio x miss time

/ \ .

time to load data proportion of accesses time to load data from
from cache to CPU | | which cause a miss main memory to cache

Can try to to minimise all three components

< 2y
R
~
-~
o}
P

epCceC

I
Cache misses: the 3 Cs

Cache misses can be divided into 3 categories:

Compulsory or cold start
first ever access to a block causes a miss

Capacity

misses caused because the cache is not large enough to hold all data

Conflict
misses caused by too many blocks mapping to same set.

epcc

N ~7 |
2
o
S
o

-
Block size

Choice of block size is a tradeoff.

Large blocks result in fewer misses because they exploit
spatial locality.

However, if the blocks are too large, they can cause
additional capacity/conflict misses (for the same total
cache size).

Larger blocks have higher miss times (take longer to load)

epCceC

>
Qfo 7 | 8
3 A
-

o

-
Set associativity

Having more sets reduces the number of conflict misses.
8-way set associate is almost as good as fully associative.

Having more sets increases the hit time.
takes longer to find the correct block.

Conflict misses can also be reduced by using a victim
cache
a small buffer which stores the most recently evicted blocks

helps prevent thrashing, where subsequent accesses all resolve to
the same set.

epCceC

-
Prefetching

One way to reduce miss rate is to load data into cache
before the load is issued. This is called prefetching

Requires modifications to the processor
must be able to support multiple outstanding cache misses.

additional hardware is required to keep track of the outstanding
prefetches

number of outstanding misses is limited (e.g. 4 or 8): extra benefit
from allowing more does not justify the hardware cost.

N ~7 |
2
-
S
-

epCceC

Hardware prefetching is typically very simple: e.g.
whenever a block is loaded, fetch consecutive block.
very effective for instruction cache
less so for data caches, but can have multiple streams.
requires regular data access patterns.

Compiler can place prefetch instructions ahead of loads.
requires extensions to the instruction set

cost in additional instructions.

no use Iif placed too far ahead: prefetched block may be replaced
before it is used.

epCceC

-
Multiple levels of cache

One way to reduce the miss time is to have more than one
level of cache.

Processor

Level 1 Cache

Level 2 Cache

Main Memory

epCceC

>
Qfo 7 | 8
3 A
5

o

-
Multiple levels of cache

Second level cache should be much larger than first level.
otherwise a level 1 miss will almost always be level 2 miss as well.

Second level cache will therefore be slower
still much faster than main memory.

Block size can be bigger, too
lower risk of conflict misses.

Typically, everything in level 1 must be in level 2 as well
(inclusion)
required for cache coherency in multiprocessor systems.

< 2y
R
~
-~
o}
P

epCceC

-
Multiple levels of cache

Three levels of cache are now commonplace.
All 3 levels now on chip

Common to have separate level 1 caches for instructions and data,
and combined level 2 and 3 caches for both

Complicates design issues
need to design each level with knowledge of the others
inclusion with differing block sizes
coherency....

I 2y
R
~
~
o}
P

epCceC

Memory hierarchy

Speed (and cost -
peed () 1 cycle -1 Kb Capacity
2-3 cycles L1 Cache ~100 Kb
~20 cycles L2 Cache ~1-10 Mb
~50 cycles L3 Cache ~10-50 Mb
~300 cycles Main Memory ~1 Gb

