
Introduction to OpenMP
Lecture 10: Caches

Overview

• Why caches are needed

• How caches work

• Cache design and performance.

The memory speed gap

• Moore’s Law: processors speed doubles every 18 months.

• True for last 35 years....

• Memory speeds (DRAM) are not keeping up (double every 5

years) .

• In 1980, both CPU and memory cycles times were around 1

microsecond.

• Floating point add and memory load took about the same time.

• In 2000 CPU cycles times were around 1 nanosecond,

memory cycle times around 100 nanoseconds.

• Memory load is 2 orders of magnitude more expensive than floating point
add.

Principal of locality

• Almost every program exhibits some degree of locality.
• Tend to reuse recently accessed data and instructions.

• Two types of data locality:

1. Temporal locality
A recently accessed item is likely to be reused in the near future.

e.g. if x is read now, it is likely to be read again, or written, soon.

2. Spatial locality
Items with nearby addresses tend to be accessed close together in

time.

e.g. if y[i]is read now, y[i+1] is likely to be read soon.

What is cache memory?

• Small, fast, memory.

• Placed between processor and main memory.

Processor

Cache Memory

Main Memory

How does this help?

• Cache can hold copies of data from main memory
locations.

• Can also hold copies of instructions.

• Cache can hold recently accessed data items for fast re-
access.

• Fetching an item from cache is much quicker than fetching
from main memory.
• 1 nanosecond instead of 100.

• For cost and speed reasons, cache is much smaller than
main memory.

Blocks

• A cache block is the minimum unit of data which can be

determined to be present in or absent from the cache.

• Normally a few words long: typically 32 to 128 bytes.

• See later for discussion of optimal block size.

• N.B. a block is sometimes also called a line.

Design decisions

• When should a copy of an item be made in the cache?

• Where is a block placed in the cache?

• How is a block found in the cache?

• Which block is replaced after a miss?

• What happens on writes?

Methods must be simple (hence cheap and fast to
implement in hardware).

When to cache?

• Always cache on reads
• except in special circumstances

• If a memory location is read and there isn’t a copy in the
cache (read miss), then cache the data.

• What happens on writes depends on the write strategy:
see later.

• N.B. for instruction caches, there are no writes

Where to cache?
• Cache is organised in blocks.

• Each block has a number:

0
1

3
2

4

1023
1022

32 bytes

Bit selection

• Simplest scheme is a direct mapped cache

• If we want to cache the contents of an address, we ignore

the last n bits where 2n is the block size.

• Block number (index) is:

(remaining bits) MOD (no. of blocks in cache)

• next m bits where 2m is number of blocks.

Full address

block
offset

block
index

0111001110101110101110011101011101 01100111000110011100 1010010100

Set associativity

• Cache is divided into sets

• A set is a group of blocks (typically 2 or 4)

• Compute set index as:

(remaining bits) MOD (no. of sets in cache)

• Data can go into any block in the set.

Full address

block
offset

set
index

011100111010111010011100111010111010 110011100110011100 1010010100

Set associativity

• If there are k blocks in a set, the cache is said to be k-way
set associative.

• If there is just one set, the cache is fully associative.

0

1

511

32 bytes

How to find a cache block
• Whenever we load an address, we have to check whether it is

cached.

• For a given address, find set where it might be cached.

• Each block has an address tag.

• address with the block index and block offset stripped off.

• Each block has a valid bit.

• if the bit is set, the block contains a valid address

• Need to check tags of all valid blocks in set for target address.

tag

Full address

block
offset

set
index

011100111010111010011100111010111010 110011100110011100 1010010100

Which block to replace?

• In a direct mapped cache there is no choice: replace the
selected block.

• In set associative caches, two common strategies:

Random
• Replace a block in the selected set at random.

Least recently used (LRU)
• Replace the block in set which was unused for longest time.

• LRU is better, but harder to implement.

What happens on write?

• Writes are less common than reads.

• Two basic strategies:

Write through
• Write data to cache block and to main memory.

• Normally do not cache on miss.

Write back
• Write data to cache block only. Copy data back to main memory only when

block is replaced.

• Dirty/clean bit used to indicate when this is necessary.

• Normally cache on miss.

Write through vs. write back

• With write back, not all writes go to main memory.

• reduces memory bandwidth.

• harder to implement than write through.

• With write through, main memory always has valid copy.

• useful for I/O and for some implementations of multiprocessor cache

coherency.

• can avoid CPU waiting for writes to complete by use of write buffer.

Cache performance

• Average memory access cost =

hit time + miss ratio x miss time

• Can try to to minimise all three components

time to load data

from cache to CPU
proportion of accesses

which cause a miss

time to load data from

main memory to cache

Cache misses: the 3 Cs

• Cache misses can be divided into 3 categories:

Compulsory or cold start

• first ever access to a block causes a miss

Capacity

• misses caused because the cache is not large enough to hold all data

Conflict

• misses caused by too many blocks mapping to same set.

Block size

• Choice of block size is a tradeoff.

• Large blocks result in fewer misses because they exploit

spatial locality.

• However, if the blocks are too large, they can cause

additional capacity/conflict misses (for the same total

cache size).

• Larger blocks have higher miss times (take longer to load)

Set associativity

• Having more sets reduces the number of conflict misses.

• 8-way set associate is almost as good as fully associative.

• Having more sets increases the hit time.

• takes longer to find the correct block.

• Conflict misses can also be reduced by using a victim

cache

• a small buffer which stores the most recently evicted blocks

• helps prevent thrashing, where subsequent accesses all resolve to

the same set.

Prefetching
• One way to reduce miss rate is to load data into cache

before the load is issued. This is called prefetching

• Requires modifications to the processor

• must be able to support multiple outstanding cache misses.

• additional hardware is required to keep track of the outstanding
prefetches

• number of outstanding misses is limited (e.g. 4 or 8): extra benefit

from allowing more does not justify the hardware cost.

• Hardware prefetching is typically very simple: e.g.

whenever a block is loaded, fetch consecutive block.

• very effective for instruction cache

• less so for data caches, but can have multiple streams.

• requires regular data access patterns.

• Compiler can place prefetch instructions ahead of loads.

• requires extensions to the instruction set

• cost in additional instructions.

• no use if placed too far ahead: prefetched block may be replaced

before it is used.

Multiple levels of cache

• One way to reduce the miss time is to have more than one

level of cache.

Processor

Level 1 Cache

Main Memory

Level 2 Cache

Multiple levels of cache

• Second level cache should be much larger than first level.

• otherwise a level 1 miss will almost always be level 2 miss as well.

• Second level cache will therefore be slower

• still much faster than main memory.

• Block size can be bigger, too

• lower risk of conflict misses.

• Typically, everything in level 1 must be in level 2 as well

(inclusion)

• required for cache coherency in multiprocessor systems.

Multiple levels of cache

• Three levels of cache are now commonplace.

• All 3 levels now on chip

• Common to have separate level 1 caches for instructions and data,

and combined level 2 and 3 caches for both

• Complicates design issues

• need to design each level with knowledge of the others

• inclusion with differing block sizes

• coherency....

Memory hierarchy

Registers

CPU

L1 Cache

L2 Cache

L3 Cache

Main Memory

Speed (and cost) Capacity
~1 Kb~1 Kb

~100 Kb~100 Kb

~1-10 Mb~1-10 Mb

~10-50 Mb~10-50 Mb

~1 Gb~1 Gb

1 cycle1 cycle

~20 cycles~20 cycles

~300 cycles~300 cycles

~50 cycles~50 cycles

2-3 cycles2-3 cycles

