
Introduction to OpenMP

Cache Coherency



Symmetric MultiProcessing
• Each processor in an SMP has equal access to all parts of memory

• same latency and bandwidth

• Examples

– IBM servers, Sun HPC Servers, Fujitsu PrimePower, 
multiprocessor PCs
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Multicore chips

• Now possible (and economically desirable) to place 

multiple processors on a chip.

• From a programming perspective, this is largely irrelevant

• simply a convenient way to build a small SMP

• on-chip buses can have very high bandwidth

• Main difference is that processors may share caches

• Typically, each core has its own Level 1 and Level 2 

caches, but the Level 3 cache is shared between cores



Typical cache hierarchy 
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Power4 two-core chip



Intel Nehalem quad-core chip



Power7 8-core chip 



• This means that multiple cores on the same chip can 

communicate with low latency and high bandwidth 

• via reads and writes which are cached in the shared cache

• However, cores contend for space in the shared cache

• one thread may suffer capacity and/or conflict misses caused by 

threads/processes on another core

• harder to have precise control over what data is in the cache

• if only single core is running, then it may have access to the whole 

shared cache

• Cores also have to share off-chip bandwidth

• for access to main memory



Multiprocessors

• Simple way to build a (small-scale) parallel machine is to 

connect multiple processors to a single memory (true 

shared memory)



Cache coherency
• Main difficulty in building multiprocessor systems is the cache 

coherency problem.

• The shared memory programming model assumes that a shared 

variable has a unique value at a given time.

• Caching in a shared memory system means that multiple copies of 

a memory location may exist in the hardware. 

• To avoid two processors caching different values of the same 

memory location, caches must be kept coherent.

• To achieve this, a write to a memory location must cause all other 

copies of this location to be removed from the caches they are in.



Coherence protocols

• Need to store information about sharing status of cache 
blocks
• has this block been modified? 

• is this block stored in more than one cache?

• Two main types of protocol

1. Snooping (or broadcast) based
• every cached copy caries sharing status 

• no central status

• all processors can see every request

2. Directory based
• sharing status stored centrally (in a directory) 



Snoopy protocols

• Already have a valid tag on cache lines: this can be used 

for invalidation.

• Need an extra tag to indicate sharing status.

• can use clean/dirty bit in write-back caches

• All processors monitor all bus transactions

• if an invalidation message is on the bus, check to see if the block is 

cached, and if so invalidate it

• if a memory read request is on the bus, check to see if the block is 
cached, and if so return data and cancel memory request.

• Many different possible implementations



3 state snoopy protocol: MSI 
• Simplest protocol which allows multiple copies to exist

• Each cache block can exist in one of three states: 

• Modified: this is the only valid copy in any cache and its value is different from 
that in memory

• Shared: this is a valid copy, but other caches may also contain it, and its value 
is the same as in memory 

• Invalid: this copy is out of date and cannot be used. 

• Model can be described by a state transition diagram.

• state transitions can occur due to actions by the processor, or by the bus.

• state transitions may trigger actions

Processor actions
• read (PrRd)
• write (PrWr)

Processor actions
• read (PrRd)
• write (PrWr)

Bus actions
• read (BusRd)
• read exclusive 
(BusRdX)
• flush to memory 
(Flush) 

Bus actions
• read (BusRd)
• read exclusive 
(BusRdX)
• flush to memory 
(Flush) 



MSI Protocol walk through

• Assume we have three processors. 

• Each is reading/writing the same value from memory 

where R1 means a read by processor 1 and W3 means a 

write by processor 3. 

• For simplicity sake, the memory location will be referred to 

as “value.” 

• The memory access stream we will walk through is:

R1, R2, W3, R2, W1, W2, R3, R2



P1 wants to read the value. The cache does not have it and generates a 
BusRd for the data. Main memory controller provides the data. The data 
goes into the cache in the shared state.
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P2 wants to read the value. Its cache does not have the data, so it places a 
BusRd to notify other processors and ask for the data. The memory 
controller provides the data.
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P3 wants to write the value. It places a BusRdX to get exclusive access and 
the most recent copy of the data. The caches of P1 and P2 see the BusRdX
and invalidate their copies. Because the value is still up-to-date in memory, 
memory provides the data.
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P2 wants to read the value. P3’s cache has the most up-to-date copy and will 
provide it. P2’s cache puts a BusRd on the bus. P3’s cache snoops this and 
cancels the memory access because it will provide the data. P3’s cache 
flushes the data to the bus.
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P1 wants to write to its cache. The cache places a BusRdX on the bus to gain exclusive access 

and the most up-to-date value. Main memory is not stale so it provides the data. The snoopers for 

P2 and P3 see the BusRdX and invalidate their copies in cache.
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W2

P2 wants to write the value. Its cache places a BusRdX to get exclusive access and the most 

recent copy of the data. P1’s snooper sees the BusRdX and flushes the data to the bus. Also, it 

invalides the data in its cache and cancels the memory access.
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P3 wants to read the value. Its cache does not have a valid copy, so it places a BusRd on the 

bus. P2 has a modified copy, so it flushes the data on the bus and changes the status of the 

cache data to shared. The flush cancels the memory access and updates the data in memory 

as well.
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P2 wants to read the value. Its cache has an up-to-date copy. No 
bus transactions need to take place as there is no cache miss.
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MSI state transitions

MM

II

SS

PrRdPrRd PrWrPrWr

PrWr=>BusRdXPrWr=>BusRdX

PrRd=>BusRdPrRd=>BusRd

PrWr=>BusRdXPrWr=>BusRdX PrRdPrRd BusRdBusRd

BusRdXBusRdX

BusRd=>FlushBusRd=>Flush

BusRdX=>FlushBusRdX=>Flush

A=>B means that when action A occurs, the state transition indicated happens, and action B is generatedA=>B means that when action A occurs, the state transition indicated happens, and action B is generated



Other protocols
• MSI is inefficient: it generates more bus traffic than is 

necessary

• Can be improved by adding other states, e.g.

• Exclusive: this copy has not been modified, but it is the only copy in any 
cache

• Owned: this copy has been modified, but there may be other copies in 
shared state

• MESI and MOESI protocols are more commonly used 

protocols than MSI

• MSI is nevertheless a useful mental model for the programmer 

• Also possible to update values in other caches on writes, 

instead of invalidating them



False sharing
• The units of data on which coherency operations are performed are cache 

blocks: the size of these units is usually 64 or 128  bytes. 

• The fact that coherency units consist of multiple words of data gives rise to 
the phenomenon of false sharing.

• Consider what happens when two processors are both writing to different

words on the same cache line. 

• no data values are actually being shared by the processors

• Each write will invalidate the copy in the other processor’s cache, causing 
a lot of bus traffic and memory accesses.

• same problem if one processor is writing and the other reading

• Can be a significant performance problem in threaded programs

• Quite difficult to detect 


