NATURAL
ENVIRONMENT E PS R‘
RESEARCH COUNCIL

Introduction to OpenMP

Cellular Automaton Exercise

\NLVE
<l L
e CC | -
e ‘ _c
C:'A ry £
> 7 o
DN e




Boundary swapping

Traffic simulation
— Update rules depend on:
- state of cell
- state of nearest neighbours in both directions

current value new value current value new value
n-1 n Nn+1 n Nn+1 N




-
State Table

If R{(i) =0, then R®*1(j) is given by:
Ri(i-1)=0 Ri(i-1) =1

Ri(i+1)=0 0 1
Ri(ix1)=1 0 1

If Ri(i) =1, then R®*1(j)is given by:
Ri(i-1) = 0 Ri(i-1) = 1

Ri(i+1)=0 0 0
Ri(i+1)=1 1 1

epCceC

»
Qfo 7 | &
2 o
@)
-




I
Pseudo Code

declare arrays old(i) and new(i), i = 0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations

set 0ld(0) = old(N) and set o0ld(N+1l) = old(1l)

loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then new(i) = 1 else new(i) =0
if old(i) =0
if old(i-1l) = 1 then new(i) = 1 else new(i) =0

end loop over 1i
set old(i) = new(i) for i =1,2,...,N-1,N

end loop over iterations

©)-rcher

<
ey
A~
o

epCceC




-
Parallelisation

Load balance not an issue
updates take equal computation regardless of state of road
split the road into equal pieces of size N/P
For each piece
rule for cell i depends on cells -1 and /+1
can parallelise as we are updating new array based on old
Synchronisation required
to ensure threads do not start until boundary data is updated

to produce a global sum of the number of cars that move
to ensure that all threads have finished before next iteration

epCceC




I
Shared Variables Parallelisation

serial: initialise old(i) for i =1,2,...,N-1,N
serial: loop over iterations
serial: set 0ld(0) = o0ld(N) and set o0ld(N+l) = old(1l)
parallel: loop over i =1,...,N
if old(i) =1
if old(i+l)
if old(i) =0
if old(i-1) = 1 then
end loop over 1i

1 then

synchronise
parallel: set old(i) = new(i) for i =1,2,...,N-1,N
synchronise

end loop over iterations

private: i; shared: old, new, N
reduction operation to compute number of moves

©)=cher epcc

<
ey
A~
o




