
GPU
Architecture

Alan Gray

EPCC

The University of Edinburgh

Outline

•  Why do we want/need accelerators such as GPUs?

•  Architectural reasons for accelerator performance
advantages

•  Latest GPU Products
–  From NVIDIA and AMD

•  Accelerated Systems

2

4 key performance factors

3

Memory

Processor

D
AT

A
IN

D
ATA O

U
T

DATA PROCESSED

1.  Amount of data processed at
one time (Parallel processing)

2.  Processing speed on each data
element (Clock frequency)

3.  Amount of data transferred at
one time (Memory bandwidth)

4.  Time for each data element to
be transferred (Memory latency)

4 key performance factors

4

Memory

Processor

D
AT

A
IN

D
ATA O

U
T

DATA PROCESSED

1. Parallel processing

2. Clock frequency

3. Memory bandwidth

4. Memory latency

•  Different computational problems
are sensitive to these in different
ways from one another

•  Different architectures address
these factors in different ways

CPUs: 4 key factors

5

•  Parallel processing
–  Until relatively recently, each CPU only had a single core. Now

CPUs have multiple cores, where each can process multiple
instructions per cycle

•  Clock frequency
–  CPUs aim to maximise clock frequency, but this has now hit a

limit due to power restrictions (more later)

•  Memory bandwidth
–  CPUs use regular DDR memory, which has limited bandwidth

•  Memory latency
–  Latency from DDR is high, but CPUs strive to hide the latency

through:
–  Large on-chip low-latency caches to stage data
–  Multithreading
–  Out-of-order execution

The Problem with CPUs

•  The power used by a CPU core is proportional to
Clock Frequency x Voltage2

•  In the past, computers got faster by increasing the
frequency
–  Voltage was decreased to keep power reasonable.

•  Now, voltage cannot be decreased any further
–  1s and 0s in a system are represented by different

voltages
–  Reducing overall voltage further would reduce this

difference to a point where 0s and 1s cannot be properly
distinguished

6

7

Reproduced from http://queue.acm.org/detail.cfm?id=2181798

The Problem with CPUs

•  Instead, performance increases can be achieved
through exploiting parallelism

•  Need a chip which can perform many parallel
operations every clock cycle
–  Many cores and/or many operations per core

•  Want to keep power/core as low as possible

•  Much of the power expended by CPU cores is on
functionality not generally that useful for HPC
–  e.g. branch prediction

8

Accelerators

•  So, for HPC, we want chips with simple, low power,
number-crunching cores

•  But we need our machine to do other things as well
as the number crunching
–  Run an operating system, perform I/O, set up calculation

etc

•  Solution: “Hybrid” system containing both CPU and
“accelerator” chips

9

Accelerators

•  It costs a huge amount of money to design and
fabricate new chips
–  Not feasible for relatively small HPC market

•  Luckily, over the last few years, Graphics
Processing Units (GPUs) have evolved for the
highly lucrative gaming market
–  And largely possess the right characteristics for HPC

– Many number-crunching cores

•  GPU vendors NVIDIA and AMD have tailored
existing GPU architectures to the HPC market

•  GPUs now firmly established in HPC industry

 10

Intel Xeon Phi

•  More recently, Intel have released a different type of
accelerator to compete with GPUs for scientific
computing
–  Many Integrated Core (MIC) architecture
–  AKA Xeon Phi (codenames Larrabee, Knights Ferry, Knights

Corner)
–  Used in conjunction with regular Xeon CPU
–  Intel prefer the term “coprocessor” to “accelerator”

•  Essentially a many-core CPU
–  Typically 50-100 cores per chip
–  with wide vector units
–  So again uses concept of many simple low-power cores

–  Each performing multiple operations per cycle

•  But latest “Knights Landing (KNL)” is not normally used
as an accelerator
–  Instead a self-hosted CPU 11

AMD 12-core CPU

•  Not much space on CPU is dedicated to compute

= compute unit
(= core)

12

NVIDIA Pascal GPU

•  GPU dedicates much more space to compute
–  At expense of caches, controllers, sophistication etc

= compute unit
(= SM
 = 64 CUDA cores)

13

Memory

•  For many applications, performance
is very sensitive to memory
bandwidth

•  GPUs use high bandwidth memory

CPUs use DRAM or HBM2 stacked memory (new
Pascal P100 chips only) 14

GPUs use Graphics DRAM (GDDR)

GPUs: 4 key factors

15

•  Parallel processing
–  GPUs have a much higher extent of parallelism than

CPUs. Many more cores and/or operations per core

•  Clock frequency
–  GPUs typically have lower clock-frequency than CPUs,

and instead get performance through parallelism

•  Memory bandwidth
–  GPUs use high bandwidth GDDR or HBM2 memory

•  Memory latency
–  Memory latency from is similar to DDR
–  GPUs hide latency through very high levels of

multithreading

Latest Technology

•  NVIDIA
–  Tesla HPC specific GPUs have

evolved from GeForce series

•  AMD
–  FirePro HPC specific GPUs have

evolved from (ATI) Radeon series

16

NVIDIA Tesla Series GPU

•  Chip partitioned into Streaming Multiprocessors (SMs) that act
independently of each other

•  Multiple cores per SM. Groups of cores act in “lock-step”: they
perform the same instruction on different data elements

•  Number of SMs, and cores per SM, varies across products. High-end
GPUs have thousands of cores 17

NVIDIA SM

18

19

Performance trends

•  GPU performance has been increasing much more rapidly
than CPU

NVIDIA Roadmap

20

AMD FirePro

•  AMD acquired ATI in 2006

•  AMD FirePro series: derivative of
Radeon chips with HPC enhancements

•  Like NVIDIA, High computational
performance and high-bandwidth
graphics memory

•  Currently much less widely used for
GPGPU than NVIDIA, because of
programming support issues

21

Programming GPUs

•  GPUs cannot be used instead of CPUs
–  They must be used together
– GPUs act as accelerators

–  Responsible for the computationally expensive parts of the code
•  CUDA: Extensions to the C language which allow

interfacing to the hardware (NVIDIA specific)

•  OpenCL: Similar to CUDA but cross-platform
(including AMD and NVIDIA)

•  Directives based approach: directives help compiler
to automatically create code for GPU. OpenACC
and now also new OpenMP 4.0

22

DRAM

GPU Accelerated Systems

•  CPUs and GPUs are used together
–  Communicate over PCIe bus

– Or, in case of newest Pascal P100 GPUs, NVLINK (more later)

CPU

GDRAM/HBM2

GPU

PCIe
I/O I/O

23

Scaling to larger systems
•  Can have multiple CPUs and GPUs within each “workstation” or

“shared memory node”
–  E.g. 2 CPUs +2 GPUs (below)
–  CPUs share memory, but GPUs do not

DRAM

CPU

PCIe
I/O I/O

CPU

PCIe
I/O I/O

GPU +
 GDRAM/

HBM2
Interconnect

Interconnect allows
multiple nodes to be
connected

24

GPU +
 GDRAM/

HBM2

GPU Accelerated Supercomputer

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

GPU+CPU
Node

…

…

…

… … …

25

DIY GPU Workstation

•  Just need to slot GPU card into PCI-e

•  Need to make sure there is enough space and
power in workstation

26

GPU Servers

•  Multiple servers can be connected via interconnect

•  Several vendors offer
GPU Servers

•  Example
Configuration:
–  4 GPUs plus 2 (multi-

core) CPUs

27

Cray XK7

•  Each compute node contains 1 CPU + 1 GPU
–  Can scale up to thousands of nodes

28

NVIDIA Pascal
•  In 2016 the Pascal P100 GPU was released, with

major improvements over previous versions

•  Adoption of stacked 3D HBM2 memory as an
alternative to GDDR.
–  Several times higher bandwidth

•  Introduction of NVLINK: an alternative to PCIe with
several-fold performance benefits
–  To closely integrate fast dedicated CPU with fast

dedicated GPU
–  CPU must also support NVLINK

–  IBM Power series only at the moment.

29

Summary

•  GPUs have higher compute and memory bandwidth
capabilities than CPUs
–  Silicon dedicated to many simplistic cores
–  Use of high bandwidth graphics or HBM2 memory

•  Accelerators are typically not used alone, but work
in tandem with CPUs

•  Most common are NVIDIA GPUs
–  AMD also have high performance GPUs, but not so

widely used due to programming support

•  GPU accelerated systems scale from simple
workstations to large-scale supercomputers

30

