GPU
Performance
Optimisation

Alan Gray
EPCC
The University of Edinburgh

Hardware

NVIDIA accelerated system:

Memory
I

CPU

SM

Bus

Main program
code

SM

Key kernel
code

SM

Shared memory

GPU performance inhibitors

* Copying data to/from device

* Device under-utilisation/ GPU memory latency
* GPU memory bandwidth
* Code branching

This lecture will address each of these

— And advise how to maximise performance

— Concentrating on NVIDIA, but many concepts will be
transferable to e.g. AMD

Host — Device Data Copy

* CPU (host) and GPU (device) have separate
memories.

* All data read/written on the device must be copied

to/from the device (over PCle bus).
— This very expensive

* Must try to minimise copies

— Keep data resident on device

— May involve porting more routines to device, even if they are not
computationally expensive

— Might be quicker to calculate something from scratch on
device instead of copying from host

Data copy optimisation example

Loop over timesteps
inexpensive routine on host (data on host)
copy data from host to device
expensive routine on device (data on device)
copy data from device to host

End loop over timesteps

* Port inexpensive routine to device and move data copies
outside of loop

copy data from host to device
Loop over timesteps
inexpensive routine on device (data on device)
expensive routine on device (data on device)
End loop over timesteps

copy data from device to host

Exposing parallelism

GPU performance relies on parallel use of many

threads
— Degree of parallelism much higher than a CPU

Effort must be made to expose as much parallelism

as possible within application
— May involve rewriting/refactoring

If significant sections of code remain serial,
effectiveness of GPU acceleration will be limited
(Amdahl’s law)

Occupancy and Memory Latency hiding

* Programmer decomposes loops in code to threads

— Obviously, there must be at least as many total threads
as cores, otherwise cores will be left idle.

* For best performance, actually want
#threads >> #cores

* Accesses to GPU memory have several hundred

cycles latency

— When a thread stalls waiting for data, if another thread
can switch in this latency can be hidden.

* NVIDIA GPUs have very fast thread switching, and
support many concurrent threads

Exposing parallelism example

Loop over 1 from 1 to 512
Loop over j from 1 to 512

independent iteration

Original code

O\

1D decomposition

2D decomposition

Calc 1 from thread/block ID
Loop over j from 1 to 512

independent iteration

Calc i & j from thread/block ID

independent iteration

x 512 threads

V 262,144 threads

Memory coalescing

* GPUs have high peak memory bandwidth

* Maximum memory bandwidth is only achieved
when data is accessed for multiple threads in a
single transaction: memory coalescing

* To achieve this, ensure that consecutive threads
access consecutive memory locations

* Otherwise, memory accesses are serialised,

significantly degrading performance

— Adapting code to allow coalescing can dramatically
improve performance

Memory coalescing example

* consecutive threads are those with consecutive
threadIdx.x or threadidx%x values

* Do consecutive threads access consecutive memory
locations?

index = blockIdx.x*blockDim.x + threadIdx.x;
C: output [index] = 2*input [index];

index = (blockidx%$x-1)*blockdim%x + threadidx%$x
F: result (index) = 2*input (index)

Coalesced. Consecutive threadIdx values
correspond to consecutive index values

Memory coalescing examples

Do consecutive threads read consecutive memory
ocations?

n C, outermost index runs fastest: j here

i = blockIdx.x*blockDim.x + threadIdx.x;
for (J=0; Jj<N; Jj++)

output[i] [j]=2*input[i] [J];

Not Coalesced. Consecutive threadIdx.x
corresponds to consecutive i values

J = blockIdx.x*blockDim.x + threadIdx.x;
for (i=0; i<N; i++)

output[i] [J]=2*input[i][JF];

Coalesced. Consecutive threadIdx.x
corresponds to consecutive j values

Memory coalescing examples

Do consecutive threads read consecutive memory
ocations?

n Fortran, innermost index runs fastest: i here

J = (blockIdx%x-1)*blockDimsx + threadIdx%x

do 1i=1, 256
output (i, j) = 2*input (i, J)
end do

Not Coalesced. Consecutive threadIdx%x
corresponds to consecutive j values

i = (blockIdx%x-1)*blockDim%$x + threadIdx%x

do j=1, 256
output (i,j) = 2*input (i, J)
end do

Coalesced. Consecutive threadIdx$x
corresponds to consecutive i values

12

Memory coalescing examples

* What about when using 2D or 3D CUDA

decompositions?

— Same procedure. X component of threadIdx is always
that which increments with consecutive threads

— E.g., for matrix addition, coalescing achieved as follows:

int jJ = blockIdx.x * blockDim.x + threadIdx.x;
int 1 = blockIdx.y * blockDim.y + threadIldx.y;
) c[i][J] = ali]l[3] + bIli]I[3];
i = (blockidx%$x-1)*blockdim%$x + threadidx%$x
F: J = (blockidx%y-1) *blockdim%y + threadidx%y
C(l/j) = a(l/j) + b(l/j)

13

Code Branching

On NVIDIA GPUs, there are less instruction scheduling
units than cores

Threads are scheduled in groups of 32, called a warp

Threads within a warp must execute the same
instruction in lock-step (on different data elements)

The CUDA programming allows branching, but this

results in all cores following all branches

— With only the required results saved
— This is obviously suboptimal

Must avoid intra-warp branching wherever possible
(especially in key computational sections)

14

Branching example

* E.g you want to split your threads into 2 groups:

i = blockIdx.x*blockDim.x + threadIdx.x;
if (1%2 == 0)

else

x Threads within warp diverge

i = blockIdx.x*blockDim.x + threadIdx.x;
if ((1/32)%2 == 0)

else

VThreads within warp follow same path

15

CUDA Profiling

* Simply set COMPUTE PROFILE environment variable
to 1

* Logfile, e.g. cuda_profile 0.log created at runtime:
timing information for kernels and data transfer

CUDA PROFILE LOG VERSION 2.0

$ CUDA DEVICE 0 Tesla M1060

CUDA CONTEXT 1

TIMESTAMPFACTOR fffffce2e9ee8858

method, gputime, cputime, occupancy

method=[memcpyHtoD] gputime=[37.952] cputime=[86.000]

method=[memcpyHtoD] gputime=[37.376] cputime=[71.000]

method=[memcpyHtoD] gputime=[37.184] cputime=[57.000]

method=[Z23inverseEdgeDetectlD colPfS S] gputime=[253.536] cputime=[13.00

0] occupancy=[0.250]

* Possible to output more metrics (cache misses etc)

— See doc/Compute Profiler.txt file in main CUDA

installation
16

Conclusions

* GPU architecture offers higher Floating Point and
memory bandwidth performance over leading CPUs

* There are a number of factors which can inhibit

application performance on the GPU.

— And a number of steps which can be taken to circumvent

these inhibitors

— Some of these may require significant development/tuning for
real applications

* |tis important to have a good understanding of the
application, architecture and programming model.

17

