
VECTORISATION

Adrian Jackson

adrianj@epcc.ed.ac.uk

@adrianjhpc

Vectorisation
• Same operation on multiple data items

• Wide registers

• SIMD needed to approach FLOP peak performance, but your code must
be capable of vectorisation

• x86 SIMD instruction sets:

• SSE: register width = 128 Bit

• 2 double precision floating point operands

• AVX: register width = 256 Bit

• 4 double precision floating point operands

256 bit

+

+

+

+

SIMD
instruction

256 bit

64 bit +

Serial
instruction

for(i=0;i<N;i++){

a[i] = b[i] + c[i]

}

do i=1,N

a(i) = b(i) + c(i)

end do

Intel AVX/AVX2

4x double

8x float

32x byte

16x short

4x integer32

2x integer64

Intel AVX512

4x double

8x float

32x byte

16x short

4x integer32

2x integer64

512-bit

32-bit

64-bit

• KNL processor has 2 x AVX512 vector units per core

• Symmetrical units

• Only one supports some of the legacy stuff (x87, MMX, some of the SSE

stuff)

• Vector instructions have a latency of 6 instructions

KNL AVX-512

• AVX512 has extensions to help with vectorisation

• Conflict detection (AVX-512CD)

• Should improve vectorisation of loops that have dependencies

vpconflict instructions

• If loops don’t have dependencies telling the compile will still
improve performance (i.e. #pragma ivdep)

• Exponential and reciprocal functions (AVX-512ER)

• Fast maths functions for transcendental sequences

• Prefetch (AVX-512PF)

• Gather/Scatter sparse vectors prior to calculation

• Pack/Unpack

Compiler vs explicit vectorisation

• Compilers will automatically try to vectorise code

• Implicit vectorisation

• Can help them to do this

• Compiler always chooses correctness rather than performance

• Will often make an automatic decision about when to vectorise

• There are programming constructs/features that let you

write explicit vector code

• Can be less portable/more machine specific

• Defined code will always be vectorised (even if slower)

When does the compiler vectorize

• What can be vectorized

• Only loops

• Usually only one loop is vectorisable in loopnest

• And most compilers only consider inner loop

• Optimising compilers will use vector instructions

• Relies on code being vectorisable

• Or in a form that the compiler can convert to be vectorisable

• Some compilers are better at this than others

• Check the compiler output listing and/or assembler listing

• Look for packed AVX/AVX2/AVX512 instructions

i.e. Instructions using registers zmm0-zmm31 (512-bit) ymm0-ymm31
(256-bit) xmm0-xmm31 (128-bit)

Instructions like vaddps, vmulps, etc…

Intel compiler
• Intel compiler requires

• Optimisation enabled (generally is by default)

• -O2

• To know what hardware it’s compiling for

• -xMIC-AVX512

• This is added automatically for you on ARCHER

• Can disable vectorisation

• -no-vec

• Useful for checking performance

• Intel compiler will provide vectorisation information

• -qopt-report=[n] (i.e. –qopt-report=5)

Helping vectorisation
• Does the loop have dependencies?

• information carried between iterations
• e.g. counter: total = total + a(i)

• No:

• Tell the compiler that it is safe to vectorise

• Yes:

• Rewrite code to use algorithm without dependencies, e.g.
• promote loop scalars to vectors (single dimension array)

• use calculated values (based on loop index) rather than iterated counters, e.g.
• Replace: count = count + 2; a(count) = ...

• By: a(2*i) = ...

• move if statements outside the inner loop

• may need temporary vectors to do this (otherwise use masking operations)

• Is there a good reason for this?
• There is an overhead in setting up vectorisation; maybe it's not worth it

• Could you unroll inner (or outer) loop to provide more work?

Vectorisation example

• Compiler cannot easily vectorise:
• Loops with pointers

• None-unit stride loops

• Funny memory patterns

• Unaligned data accesses

• Conditionals/Function calls in loops

• Data dependencies between loop iterations

• ….
int *loop_size;

void problem_function(float *data1, float *data2, float
*data3, int *index){

int i,j;

for(i=0;i<*loop_size;i++){

j = index[i];

data1[j] = data2[i] * data3[i];

}

}

Vectorisation example

• Can help compiler
• Tell it loops are independent

• #pragma ivdep

• !dir$ ivdep

• Tell it that variables or arrays are unique
• restrict

• Align arrays to cache line boundaries

• Tell the compiler the arrays are aligned

• Make loop sizes explicit to the compiler
• Ensure loops are big enough to vectorise

int *loop_size;

void problem_function(float * restrict data1, float * restrict data2, float
* restrict data3, int * restrict index){

int i,j,n;

n = *loop_size;

#pragma ivdep

for(i=0;i<n;i++){

j = index[i];

data1[j] = data2[i] * data3[i];

}

}

Vectorisation example

• This loop doesn’t vectorise either:
do j = 1,N

x = xinit

do i = 1,N

x = x + vexpr(i,j)

y(i) = y(i) + x

end do

end do

• Compiler will vectorise inner loop by default
• Dependency on x between loop iterations

do j = 1,N

x(j) = xinit

end do

do j = 1,N

do i = 1,N

x(i) = x(i) + vexpr(i,j)

y(i) = y(i) + x(i)

end do

end do

Data alignment
• When vectorising data aligned data is essential for

performance

• Unaligned data
• May require multiple data loads, multiple cache lines, multiple

instructions

• Will generate 3 different versions of a loop: peel, kernel, remainder

• Aligned data
• Minimum number of data loads/cache lines/instructions

• Will generate 2 different versions of a loop:

kernel and remainder

Cache line

a[0] a[1] a[2] a[3]

Vector register

Align data

• Align on allocate/create (dynamic)
• _mm_malloc, _mm_free
float *a = _mm_malloc(1024*sizeof(float),64);

• align attribute (at definition, not allocation)
real, allocatable :: A(1024)

!dir$ attributes align : 64 :: a

• Align on definition (static)
float a[1024] __attribute__((aligned(64)));

real :: A(1024)

!dir$ attributes align : 64 :: a

• Common blocks in Fortran
• It’s not possible to use directives to align data inside a common block

• Can align the start of a common block
!DIR$ ATTRIBUTES ALIGN : 64 :: /common_name/

• Up to you to pad elements inside common block

• Derived types
• May need to use SEQUENCE keyword and manually pad to get correct alignment

Multi-dimensional alignment

• Need to be careful with multi-dimensional arrays and

alignment

• If you _mm_malloc each dimension then it should be fine

• If you do a single dimension _mm_malloc there may be issues:

float* a = _mm_malloc(16*15(sizeof(float), 64);

for(i=0;i<16;i++){

#pragma vector aligned

for(j=0;j<15;j++){

a[i*15+j]++;

}

}

Inform on alignment
• For non-static data, as well as aligning data, need to tell compiler it is aligned
• Number of different ways to do this
• Alignment of data inside a loop

• Specify all data in the loop is aligned
#pragma vector aligned

!dir$ vector aligned

• Alignment of an array
• Specify, for code after the alignment statement, a specific array is aligned
__assume_aligned(a, 64);

!dir$ assume_aligned a: 64

• May also need to define to properties of loop scalars
__assume(n1%16==0);

for(i=0;i<n;i++){

x[i] = a[i] + a[i-n1] + a[i+n1];

}

!dir$ assume(mod(n1,16).eq.0)

• Also can use OpenMP simd clause
• Specify array is aligned for simd loop
#pragma omp simd aligned(a:64)

!omp$ simd aligned(a:64)

Fortran data

• Different ways of passing data to subroutines can affect
performance

• Explicit arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(1024) :: A

real, intent(in), dimension(1024) :: B, C

• Compiler generates subroutine code based on contiguous data

• Packing/unpacking required to do this is done by the compiler at caller
level

• May be overhead associated with this

• Need to tell the compiler the arrays are aligned (i.e. !dir$
assume_aligned or !dir$ vector aligned)

• Same for arrays where array size is passed as an argument to the
routine

Fortran data

• Assumed size arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(1024) :: A

real, intent(in), dimension(1024) :: B, C

• Compiler will generate different versions of the code, with and
without contiguous functionality

• Different versions may show up in the vector reports from the compiler

• If there are too many different potential versions not all of them will

necessarily be generated

• The fall back version (none unit stride, not vectorised) will be used in this case

for inputs that don’t match any of the other versions

• Choice which is used made at runtime

• Still need to tell the compiler the arrays are aligned

Fortran data

• Assumed shape arrays
subroutine vec_add_mult(A, B, C)

real, intent(inout), dimension(*) :: A

real, intent(in), dimension(*) :: B, C

• Compiler generates subroutine code based on contiguous data

• Packing/unpacking required to do this is done by the compiler at caller

level

• May be overhead associated with this

• Still need to tell the compiler the arrays are aligned

Fortran Indirect addressing

• Indirect addressing code can have some strange affects on
vectorisation
subroutine vec_add_mult(A, B, C, index)

real, intent(inout), dimension(1024) :: A

real, intent(in), dimension(1024) :: B, C

integer, intent(in), dimension(1024) :: index

integer :: I

• Following has flow dependency (needs ivdep directive)

do i=1,n

a(index(i)) = a(index(i)) + b(index(i)) * c(index(i))

end do

• Uses gather and scatter operations to pack/unpack indexed locations

• Following creates array temporary for right hand side evaluation

a(index(:)) = a(index(:)) + b(index(:)) * c(index(:))

• Ends up creating 2 loops

temp(:) = a(index(:)) + b(index(:)) * c(index(:))

a(index(:)) = temp(:)

• Uses gather/scatter in both loops

Gathers and Scatters

• If data not accessed in unit stride, may still be vectorised

• Using vector gather and scatter instructions

• Pack and unpack registers

• KNL has specialised gather and scatter instructions

• Improve performance of data load/store (compared to older
vectorisation functionality)

• Still cost more than aligned data

• Vector scalar

• Possible to vectorise and still be doing scalar calculations

• Vector operation on a single valid element

• Compiler reports vectorisation, performance doesn’t change

Masking

• Vectorisation is disrupted by conditional statements in

loops

• Mask instructions can be used to protect elements that

shouldn’t be updated based on an if/else construct

• mask is an integer array that can be compared for non-zero
numbers

• select the vector lanes to run or update

for (i = 0; i < N; i++) {

if (Trigger[i] < Val) {

A[i] = B[i] + 0.5;

}

}

Blending

• Compiler will try and use more advanced techniques to avoid
masking

for (i = 0; i < N; i++) {

if (Trigger[i] < Val) {

A[i] = B[i] + 0.5;

}else{

A[i] = B[i] - 0.5;

}

}

for (i = 0; i < N; i+=16) {

TmpB= B[i:i+15];

Mask = Trigger[i:i+15] < Val

TmpA1 = TmpB + 0.5;

TmpA2 = TmpB - 0.5;

TmpA = BLEND Mask, TmpA1, TmpA2

A[i:i+15] = TmpA;

}

Explicit vectorisation

• Language features, intrinsics, extensions, etc… let you

manually specify vectorisation

• Override compiler, implement yourself

• Forces compiler to do it

• Up to you to make sure it’s correct

• OpenMP SIMD directive

• Intel directives

• CilkPlus/Fortran array notation

• Vector intrinsics

• Not recommend for KNL

• At least, the intrinsics used for KNC are not expected to give good

performance on KNL

OpenMP SIMD directives

• Many compilers support SIMD directives to aid vectorisation of

loops.

• compiler can struggle to generate SIMD code without these

• OpenMP 4.0 provides a standardised set

• Use simd directive to indicate a loop should be vectorised

#pragma omp simd [clauses]

!omp$ simd [clauses]

• Executes iterations of following loop in SIMD chunks

• Loop is not divided across threads

• SIMD chunk is set of iterations executed concurrently by

SIMD lanes

OpenMP SIMD clauses
• Clauses control data environment and partitioning
• safelen(length)limits the number of iterations in a SIMD chunk.

• linear(a1,a2,….) lists variables with a linear relationship to the

iteration space (loop variable)
• aligned(a1:base,…) specifies byte alignments of a list of

variables
• private, lastprivate, reduction specify data scoping of

functionality (as per the OpenMP standard)
• collapse will combine multiple perfectly nested loops below the

directive to give a bigger loop space
• declare simd directive to generate SIMDised versions of

functions.

• Can be combined with OpenMP loop constructs

SIMD example

int *loop_size;

void problem_function(float *data1, float

*data2, float *data3, int *index){

int i,j;

#pragma omp simd

for(i=0;i<*loop_size;i++){

j = index[i];

data1[j] = data2[i] * data3[i];

}

}

SIMD function

• Can define functions that can be called from within a

vectorised loop

• Can specify things about the function arguments

• Fortran:

!$omp declare simd(name) [clause

[[,clause]…]

function name …

• C/C++

#pragma omp declare simd [clause

[[,clause]…]

function name ….

SIMD function clauses
• simdlen(length) defines the vector length to be used,

must be power of 2
• linear(a1,a2,….) lists variables with a linear relationship

to the iteration space (loop variable)
• aligned(a1:base,…) specifies byte alignments of a list of

variables
• uniform(qdata,…) declares that arguments aren’t vectors

(so constant across SIMD lanes

• inbranch, notinbranch whether function is called in a

branch or not

Cilk

• C/C++ extension

• Provides array and array section operations

• Similar to Fortran array syntax

• Specify array start, length, and stride

A[:]

A[start : length]

A[start : length : stride]

• length is number of elements in subarray, not maximum

index in subarray

A[:] = B[:] + C[:]

Cilk

• Long form

A[0:N] = B[0:N] + C[0:N];

D[0:N] = A[0:N] * B[0:N];

• Concise

• Short form

for(i=0;i<N;i=i+V){

A[i:V] = B[i:V] + C[i:V];

D[i:V] = A[i:V] * B[i:V];

}

• Can be more efficient, loop blocking so should give better cache re-
use.

• Same true of Fortran array syntax

Fortran array syntax and elemental

• Standard Fortran array syntax should vectorise well
real, dimension(1024) :: a,b,c

!dir$ attributes align : 64 :: a

!dir$ attributes align : 64 :: b

!dir$ attributes align : 64 :: c

A=B+C

• Elemental functions should also allow loops containing

them to be vectorised:
module test_mod

implicit none

contains

elemental real function square(x)

real, intent(in) :: x

square = x*x

end function

end module

program test_prog

use test_mod

implicit none

integer :: i

real, dimension(4) :: x = (/ 1.0, 2.0, 3.0, 4.0 /)

do i=1,4

square(x(i))

end do

end program

Explicit vector programming

• Can program with explicit vector instructions

double A[vec_width], B[vec_width];

__m512d A_vec = _mm512_load_pd(A);

__m512d B_vec = _mm512_load_pd(B);

A_vec = _mm512_add_pd(A_vec,B_vec);

_mm512_store_pd(A,A_vec);

• Not recommended as it limits portability

• i.e. KNC instructions will not perform as efficiently on KNL

• If want to do from Fortran can cross call between C and Fortran,
write kernel in C

Comparing vectorisation performance

0

1

2

3

4

5

6

7

8

9

P
e

rf
o

rm
a

n
ce

 R
a

ti
o

Relative performance ARCHER node to one Knights Landing Xeon Phi

(>1 Xeon Phi better, <1 ARCHER better)

SIMD Ivdep Cilk MKL

Summary

• Vectorisation key to performance on modern processors

• With it, 32x performance boost for KNL

• 16 DP vector operations x FMA

• Vector support for real world applications better with KNL

• Vectorisation of gather/scatter/dependencies better supported

• Still will have some performance impact

• Test your code with and without vectorisation

• Manually turn it off at compile time

• See what the performance difference is

• Look at the compiler vectorisation reports

• Understand how well it (thinks it) is vectorising your code

