
Parallel Performance

Analysis Tools
Gordon Gibb; g.gibb@epcc.ed.ac.uk

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• Motivations

• Discussion of CrayPAT and Scalasca

• Outline example code

• CrayPAT Usage

• Scalasca Usage

Motivations – What is Profiling?

• Examine the behaviour of the code

• Pick out any subroutines/functions that cause slowdown

or have unusual behaviour

• Two types:

1. Sampling (periodically queries running code to determine what

function the code is in)

2. Tracing (adds instructions into the code that report when

entering/leaving functions, and various statistics)

Motivations – What is Profiling?

Build code

Instrument

code

Run experiment
Analyse

profiling data

Make changes

to code

Identified a

problem to fix?

Need to gather

additional data?

Picking an Example to Analyse

• Profiling generates a lot of extra data, and can cause your

code to run more slowly

• Need to choose a reasonably short example, but:

• Program execution must be representative of a production run

• Must be long enough to hide start-up and finalisation costs

• Should include all the I/O of a normal job

• A good choice is something like a benchmark problem

that takes a few minutes to run on a node/handful of

nodes

Motivations - Why Profile?

• For developers:

• Understand what the most time-consuming parts of the program

are

• Understand communication patterns and problems

• E.g. load imbalance, synchronisation costs

• Tool to help direct development efforts to give maximum benefits

• For users?

• Understand why your program performs in a certain way

• Help with choice of appropriate parameters, MPI processes…

Profilers: CrayPAT and Scalasca

• In this course we will consider two parallel performance

analysis tools; CrayPAT and Scalasca

• With each tool you

1. Instrument your code (typically during building)

2. Run your code

3. Analyse results

CrayPAT

+Various levels of detail

+Extreme customisibility for expert users

- Only available on Cray Platforms

- GUI is not particularly useful

Scalasca

+Open source

+Portable

+Allows you to determine early/late senders etc…

+Useful GUI (Cube)

- Unable to trace CUDA, SHMEM events or OpenMP

nested parallelism

Example Test Code - CFD

• In this tutorial we will use a simple MPI code to

demonstrate parallel performance analysis

• A computational fluid dynamics (CFD) code is employed,

which calculates the flow of fluid within a cavity with an

inlet in one side, and an outlet on another.

• The code can calculate the inviscid or viscid fluid flow.

Example Test Code - CFD

• Solves Poisson’s Equation for the streamfunction:

• Available in both C and Fortran

Example Test Code - CFD

• Iterate until convergence

Example Test Code - CFD

• Parallelised in the x (C) or y (Fortran) directions

• Halos transferred via MPI_Sendrecv

Example Test Code - CFD

• The code can be found on the course web pages

• To run it, use

aprun –n [nprocs] ./cfd <scale> <numiter> <Re>

Where

• nprocs is the number of MPI processes

• scale scales the size of the box (32 x scale cells)

• numiter is the number of iterations

• Re (optional) is the Reynolds number (0 ≤ Re < 3.7)

Example Test Code - CFD

• The output can be visualised using:

$ gnuplot –persist cfd.plt

Examples of Performance Tools

• I will now go onto demonstrate CrayPAT and Scalasca on

ARCHER using the CFD code.

• Afterwards you will get an opportunity to try using

CrayPAT/Scalasca yourselves

• For best results, it is recommended that you to login to

ARCHER with an X-windows connection, e.g.

$ ssh –X [username]@login.archer.ac.uk

Using CrayPAT - Sampling

• Load the CrayPAT modules:

$ module load perftools-base

$ module load perftools

• Build executable as normal

$ make clean; make

• Instrument the binary using pat_build

$ pat_build ./cfd

Using CrayPAT - Sampling

• Instrumentation creates a new binary cfd+pat

• Modify the job submission script to run this new binary,

then submit the job

$ qsub submit.pbs

• This will run the cfd code with sampling

Using CrayPAT - Sampling

• Once the job has completed, it will have created an

additional file: cfd+pat+<number>.xf

• Generate a human-readable report using pat_report

$ pat_report cfd+pat+<number>.xf

(You can put this information into a file by using the

argument ‘–o <file>’)

Using CrayPAT - Sampling
Table 1: Profile by Function

 Samp% | Samp | Imb. | Imb. |Group

 | | Samp | Samp% | Function

 | | | | PE=HIDE

 100.0% | 1,906.5 | -- | -- |Total

|---

| 96.6% | 1,842.0 | -- | -- |USER

||--

|| 74.9% | 1,427.2 | 15.8 | 1.5% |jacobistepvort

|| 21.0% | 401.0 | 8.0 | 2.6% |main

||==

| 3.3% | 62.5 | -- | -- |MPI

||--

|| 3.1% | 58.5 | 25.5 | 40.5% |MPI_Sendrecv

|===

Using CrayPAT - Sampling

Pat_report also produces two other files; an .ap2 file, and

an .apa file:

• The ap2 file acts as an input to the Apprentice2 graphical

interface for viewing performance statistics

$ app2 <file>.ap2

• The apa file contains suggested configuration options for

a traced experiment

Using CrayPAT – Apprentice2

Using CrayPAT - Tracing

• Instrument the binary for tracing using the .apa file as an input
to pat_build
$ pat_build -O cfd+pat+<number>.apa

• Modify the job submission script to use the new binary then
submit the job
$ qsub submit.pbs

• View the results data using pat_report as before
$ pat_report cfd+apa+<number>.xf

• Then use Apprentice2 if desired
$ app2 cfd+apa+<number>.ap2

Using CrayPAT

• This process can be continued as necessary until the

information you need has been obtained/you have gained

the desired understanding of your code’s performance

• More information on CrayPAT can be found using the

commands

$ pat_help

$ man intro_pat

$ man pat_build

$ man pat_report

Using Scalasca - Sampling

• Load the Scalasca module

$ module load scalasca

• Instrumentation must be carried out during compilation by

prepending scorep to the compiler. For example

$ scorep cc -c foo.c or $ scorep ftn –c foo.f90

• Modify the compiler line in Makefile to include scorep:

CC = scorep cc

FC = scorep ftn

Using Scalasca - Sampling

• It is important to ensure that scorep is used during the

linking of the object files.

• Functions/subroutines/files that you do not need/want to

instrument do not need to be compiled with scorep

• Build the executable

make clean; make

Using Scalasca - Sampling

• Modify the submission script to launch the parallel job with

scalasca –analyze, e.g.

scalasca –analyze aprun –np 4 ./cfd <options>

• Submit the job

$ qsub submit.pbs

• A measurement directory scorep_cfd_4_sum is created

during the job’s execution which contains all the log files

Using Scalasca - Sampling

• To analyse the output data, first run
$ scalasca –examine scorep_cfd_4_sum

• This will open the cube browser, which allows you to
examine the code’s timings

• Using the –s option produces a file (scorep.score) that
can be used to advise you about setting up a tracing
experiment
$scalasca –examine –s scorep_cfd_4_sum

Using Scalasca - Cube

Using Scalasca - Tracing

Examining the scorep.score file in the measurement
directory reveals information on the estimated final disk
usage and memory usage of a trace

Estimated aggregate size of event trace: 128MB

Estimated requirements for largest trace buffer (max_buf): 32MB

Estimated memory requirements (SCOREP_TOTAL_MEMORY): 34MB

(hint: When tracing set SCOREP_TOTAL_MEMORY=34MB to avoid intermediate flushes

 or reduce requirements using USR regions filters.)

type max_buf[B] visits time[s] time[%] time/visit[us] region

ALL 33,493,662 3,848,767 78.79 100.0 20.47 ALL

MPI 22,401,846 2,000,134 2.95 3.7 1.47 MPI

USR 7,491,672 1,248,609 57.90 73.5 46.37 USR

COM 3,600,144 600,024 17.95 22.8 29.91 COM

Using Scalasca - Tracing

• To trace the code, alter your job submission script to

contain:

scalasca –analyze –q –t aprun –np 4 ./cfd <options>

• Don’t forget to also set SCOREP_TOTAL_MEMORY in

the script as suggested in the .score file:

export SCOREP_TOTAL_MEMORY=34MB

Using Scalasca - Tracing

• A new directory scorep_cfd_4_trace is created, and the

results can be examined using

$ scalasca -examine scorep_cfd_4_trace

• This time, more information is present, such as that on

late senders/receivers.

Using Scalasca - Tracing

• If the estimated disk/memory usage for tracing is too high, you
may need to consider to avoid tracing certain functions by
using a filter file:

SCOREP_REGION_NAMES_BEGIN

 EXCLUDE

 jacobistepvort

 MPI_Sendrecv

SCOREP_REGION_NAMES_END

• Usage:

scalasca –examine –f filter.txt aprun ...

scalasca –analyze –q –t –f filter.txt aprun ...

Using Scalsca

• More information can be found on the Scalasca website

http://www.scalasca.org

• In particular their user’s guide:

http://apps.fz-

juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf

http://www.scalasca.org/
http://www.scalasca.org/
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf
http://apps.fz-juelich.de/scalasca/releases/scalasca/2.3/docs/UserGuide.pdf

Practical: CFD

• Try out using CrayPAT and/or Scalasca to investigate the
performance of the CFD code

• Options:
• Try using different values for scale, and investigate turning viscosity

on and off

• How does the profile change when running on large numbers of
processes?

• Terminate calculation based on a tolerance value (see comments in
code), investigate only computing this infrequently

• Investigate using serialised Send / Receive functions (see
alternative boundary source files) instead of Sendrecv

