
David Henty, Iain Bethune

EPCC

The University of Edinburgh

Asynchronous

Parallel Methods

Overview

• What’s the problem?

• What is an asynchronous method?

• Reducing synchronisation in existing models

7 December 2016 Asynchronous Methods 2

http://www.epcc.ed.ac.uk/

The Problem

• Synchronisations often essential for program correctness

– waiting for an MPI receive to complete before reading from buffer

– barriers at the end of an OpenMP parallel loop

– …

• But they cost time

– and slow down the calculation

• Cost is usually not the synchronisation operation itself

– it is waiting for other tasks to catch up with each other

– all calculations have some load imbalance from random fluctuations

– a real problem as we increase the number of cores

• Try to reduce synchronisation

– and let things happen in their “natural” order

7 December 2016 Asynchronous Methods 3

http://www.epcc.ed.ac.uk/

Reference

• See:

– “The Case of the Missing Supercomputer

Performance: Achieving Optimal Performance

on the 8,192 Processors of ASCI Q”

– Fabrizio Petrini, Darren J. Kerbyson, Scott

Pakin

– http://dx.doi.org/10.1145/1048935.1050204

– “[W]hen you have eliminated the impossible,

whatever remains, however improbable, must

be the truth.”

– Sherlock Holmes, Sign of Four, Sir Arthur

Conan Doyle

7 December 2016 Asynchronous Methods 4

http://www.epcc.ed.ac.uk/

An example

• “Although SAGE [the application]

spends half of its time in allreduce (at

4,096 processors), making allreduce

seven times faster leads to a negligible

performance improvement.”

• Collectives an extreme example

– point-to-point is also an issue

7 December 2016 Asynchronous Methods 5

SAGE time per iteration

http://www.epcc.ed.ac.uk/

Case Study: Jacobi Iteration

• Simulation parameters (simplified)

– total number of pixels: L x L

– number of processors: P

– decomposition: P x 1 (1D) or √P x √P (2D)

• System properties (simplified)

– floating-point operations per second: f

– message-passing latency: Tl

– message-passing bandwidth: B

7 December 2016 Performance Modelling 6

http://www.epcc.ed.ac.uk/

Calculation time (per iteration)

7 December 2016 Performance Modelling 7

jijijijijiji

edgeoldoldoldoldnew
,1,1,,1,1,

*25.0

– 5 floating-point operations per pixel

• Delta calculation

– 3 flops per pixel

• Time taken:

P

L
N

pixel

2

• Update

jijijiji

oldnewoldnewdeltadelta
,,,,

*

f

N
pixelperflopsTime

pixel
*__

http://www.epcc.ed.ac.uk/

Collectives

• Reduce frequency of calculation by a factor X

– e.g. trade more calculation for fewer synchronisations

• Possible because array updates independent of global values

– may not be true for, e.g., Conjugate Gradient

– can use different algorithms, e.g. Chebyshev iteration

– again, more iterations but less synchronisation

7 December 2016 Asynchronous Methods 8

loop over iterations:

 update arrays;

 compute local delta;

 compute global delta

 using allreduce;

 stop if less than

 tolerance value;

end loop

loop over iterations:

 update arrays;

 every X iterations:

 local delta;

 global delta;

 can we stop?;

end loop

http://www.epcc.ed.ac.uk/

Barriers

• (Almost) never required for MPI program correctness

• Why?

– because collectives do the appropriate synchronisation

– because MPI_Recv is synchronous

7 December 2016 Asynchronous Methods 9

http://www.epcc.ed.ac.uk/

Halo swapping

• Normal halos on old(M,N)

7 December 2016 Asynchronous Methods 10

halo swap

swap data into 4 halos: i=0, i=M+1, j=0, j=M+1

loop i=1:M; j=1:N;

 new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

 + old(i,j-1) + old(i,j+1)

 – edge(i,j))

http://www.epcc.ed.ac.uk/

Point-to-point

• Do not impose unnecessary ordering of messages

– loop now just counts the correct number of messages

• Alternative

– first issue a separate non-blocking receive for each source

– then issue a single Waitall

7 December 2016 Asynchronous Methods 11

loop over sources:

 receive value from

 particular source;

end loop

loop over sources:

 receive value from

 any source;

end loop

http://www.epcc.ed.ac.uk/

Halo swapping

• Do not impose unnecessary ordering of messages

• Extensions

– can now overlap communications with core calculation

– only need to wait for receives before non-core calculation

– wait for sends to complete before starting next core calculation

7 December 2016 Asynchronous Methods 12

loop over directions:

 send up; recv down;

 send down; recv up;

end loop

loop over directions:

 isend up; irecv down;

 isend down; irecv up;

end loop

wait on all requests;

http://www.epcc.ed.ac.uk/

Overlapping

7 December 2016 Asynchronous Methods 13

halo swap

start non-blocking sends/recvs

loop i=2:M-1; j=2:N-1;

 new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

 + old(i,j-1) + old(i,j+1)

 – edge(i,j))

wait for completion of non-blocking sends/recvs

complete calculation at the four edges

http://www.epcc.ed.ac.uk/

Halos of Depth D

7 December 2016 Asynchronous Methods 14

halo swap

loop d=D:1:-1

 loop i=2-d:M+d-1; j=2-d:N+d-1;

 new(i,j) = 0.25*(old(i-1,j) + old(i+1,j)

 + old(i,j-1) + old(i,j+1)

 – edge(i,j))

• Use less frequent communication

– smaller number of larger messages; increased computation

http://www.epcc.ed.ac.uk/

Swap depth D every D iterations

7 December 2016 Asynchronous Methods 15

• Need diagonal communications

– and must swap halos of depth D-1 on edge(i,j)

http://www.epcc.ed.ac.uk/

Persistent communications

• Standard method: run this code every iteration
MPI_Irecv(..., procup, ..., &reqs[0]);

MPI_Irecv(..., procdn, ..., &reqs[1]);

MPI_Isend(..., procdn, ..., &reqs[2]);

MPI_Isend(..., procup, ..., &reqs[3]);

MPI_Waitall(4, reqs, statuses);

• Persistent comms: setup once
MPI_Recv_init(..., procup, ..., &reqs[0]);

MPI_Recv_init(..., procdn, ..., &reqs[1]);

MPI_Send_init(..., procdn, &reqs[2]);

MPI_Send_init(..., procup, ..., &reqs[3]);

• Every iteration:
MPI_Startall(4, reqs);

• Warning

– message ordering not guaranteed to be preserved

7 December 2016 Asynchronous Methods 16

http://www.epcc.ed.ac.uk/

