EPCC

David Henty, lain Bethune
The University of Edinburgh

N N
S O
O O
C S
m O
T
> V'

G
S

S Tl %!
. aTHAN
Overview L W‘

* What's the problem?

* What is an asynchronous method?

* Reducing synchronisation in existing models

7 December 2016 Asynchronous Methods

http://www.epcc.ed.ac.uk/

The Problem | Ny o

* Synchronisations often essential for program correctness

— waiting for an MPI receive to complete before reading from buffer
— barriers at the end of an OpenMP parallel loop

* But they cost time

— and slow down the calculation

* Cost is usually not the synchronisation operation itself

— It is waiting for other tasks to catch up with each other
— all calculations have some load imbalance from random fluctuations
— areal problem as we increase the number of cores

* Try to reduce synchronisation

— and let things happen in their “natural” order

7 Dece bér *g Asynchronous Methods

http://www.epcc.ed.ac.uk/

Reference

* See:

— “The Case of the Missing Supercomputer
Performance: Achieving Optimal Performance
on the 8,192 Processors of ASCI Q”

— Fabrizio Petrini, Darren J. Kerbyson, Scott
Pakin

— http://dx.doi.org/10.1145/1048935.1050204

— “[W]hen you have eliminated the impossible,

whatever remains, however improbable, must
be the truth.”

— Sherlock Holmes, Sign of Four, Sir Arthur
Conan Doyle

7 Dece bér 216

Asynchronous Methods

http://www.epcc.ed.ac.uk/

An example

* “Although SAGE [the application]
spends half of its time in allreduce (at
4,096 processors), making allreduce

seven times faster leads to a negligible

120

performance improvement.” -

100 —]

a0 |

* Collectives an extreme example
— point-to-point is also an issue

60

tems

40

20

s T O

Histogram Bins (s)

SAGE time per iteration

7 Dece b'ér ‘ﬂm Asynchronous Methods

http://www.epcc.ed.ac.uk/

Case Study: Jacobi Iteration

e Simulation parameters (simplified)

— total number of pixels: L x L
— number of processors: P
— decomposition: P x 1 (1D) or VP x VP (2D)

e System properties (simplified)
— floating-point operations per second: f
— message-passing latency: T,
— message-passing bandwidth: B

7 December 216 Performance Modelling

http://www.epcc.ed.ac.uk/

Calculation time (per iteration) — “WETERES

* Update

new, = 0.25*(old,, +old,, +old, ,+old, —edge,)

— 5 floating-point operations per pixel

* Delta calculation

delta = delta + (newi,j —old i,j)"‘(newi,j —old i,j)
— 3 flops per pixel
N

* Time taken: Time = ﬂOpS _per _ pixel * pixel
L° :
N pixel F

7 December 216 Performance Modelling

http://www.epcc.ed.ac.uk/

Collectives

* Reduce frequency of calculation by a factor X

— e.g. trade more calculation for fewer synchronisations

loop over 1iterations:
update arrays;
compute local delta;
compute global delta
using allreduce;
stop 1f less than
tolerance value;

end loop

loop over iterations:
update arrays;
every X 1terations:
local delta;
global delta;
can we stop?;

end loop

* Possible because array updates independent of global values

— may not be true for, e.g., Conjugate Gradient
— can use different algorithms, e.g. Chebyshev iteration
— again, more iterations but less synchronisation

*E‘g; Asynchronous Methods

http://www.epcc.ed.ac.uk/

Barriers BA TAAMETEGY _‘ .

* (Almost) never required for MPI program correctness

* Why?

— because collectives do the appropriate synchronisation
— because MPI_Recv is synchronous

7 December 2016 Asynchronous Methods

http://www.epcc.ed.ac.uk/

Halo swapping

* Normal halos on old(M,N)

halo swap

swap data into 4 halos: 1=0, i=M+1, =0, jJ=M+1
loop 1=1:M; J=1:N;
new(i,j) = 0.25%(old(i-1,73) + old(i+1,7)
+ old(i,j-1) + old(i,j+1)
- edge(j—rj))

*ﬁ‘; Asynchronous Methods ‘ _.

http://www.epcc.ed.ac.uk/

Point-to-point

* Do not impose unnecessary ordering of messages

loop over sources: loop over sources:
recelve value from recelve value from
particular source; any source;

end loop end loop

— loop now just counts the correct number of messages

* Alternative

— first issue a separate non-blocking receive for each source
— then issue a single Waitall

7 Dece bér *g Asynchronous Methods l -

http://www.epcc.ed.ac.uk/

Halo swapping

* Do not impose unnecessary ordering of messages

loop over directions: loop over directions:
send up; recv down; i1send up; 1recv down;
send down; recv up; 1send down; 1recv up;
end loop end loop
walt on all requests;

e Extensions

— can now overlap communications with core calculation
— only need to wait for receives before non-core calculation
— wailt for sends to complete before starting next core calculation

7 December Nm

Asynchronous Methods ‘ "~

http://www.epcc.ed.ac.uk/

Overlapping

halo swap

start non-blocking sends/recvs

loop 1=2:M-1; J]=2:N-1;

new(i,J) = 0.25*(old(i-1,73) + old(i+1,7)
+ old(i,j-1) + old(i,j+1)
— edge (1, 7]))

wait for completion of non-blocking sends/recvs
complete calculation at the four edges

7 December 2016 Asynchronous Methods
ES

http://www.epcc.ed.ac.uk/

Halos of Depth D
* Use less frequent communication

— smaller number of larger messages; increased computation

halo swap

loop d=D:1:-1

loop 1=2-d:M+d-1; jJ=2-d:N+d-1;

new(i,j) = 0.25*(old(i-1,3) + old(i+1,7)
+ old(i,-1) + old(d,3+1)
- edge(l,j))

7 December *]'l_‘g Asynchronous Methods

http://www.epcc.ed.ac.uk/

Swap depth D every D iteratidhsfm

)y |
=)

> |

* Need diagonal communications
— and must swap halos of depth D-1 on edge(i,))

7 December 2016

Asynchronous Methods

http://www.epcc.ed.ac.uk/

. S |4 L LN
Persistent communications L\

e Standard method: run this code every iteration

MPI Irecv (..

MPI Irecv(..., procdn, ..., &redgs
MPI Isend(..

MPI Isend(..., procup, ..., &redgs
MPI Waitall (4, regs, statuses);

., procup, ..., ®s

., procdn, ..., ®s

* Persistent comms: setup once

MPI Recv init (..., procup, ..., ®s

MPI Recv init (..., procdn, ..., ®s

MPI Send init(..
(

MPI Send init (..

., procdn, ®s

., procup, ..., ®s

* Every iteration:
MPI Startall (4, regs);

* Warning
— message ordering not guaranteed to be preserved

7 Dece bér 216

Asynchronous Methods

http://www.epcc.ed.ac.uk/

