
OpenSHMEM Specification 1.0
Summary of the C/C++ Interface

Library Routines

The complete OpenSHMEM specification can be downloaded from http://www.openshmem.org

Initialization Routines

void start_pes(int npes);
Initializes the OpenSHMEM library. This routine must be called before any library other
routine is called.

Query Routines

int _my_pe(void);
Returns the virtual PE number of the calling PE.

int _num_pes(void);
Returns the virtual PE number of the calling PE.

Data Transfer Routines

void shmem_[funcname]_g([type] *addr, int pe);
Retrieve data of basic types from a remote PE.
[funcname] can be anything in { short, int, float, double, long }
[type] can be anything in { short, int, float, double, long }

void shmem_[funcname]_get([type] *dest, [type] *src, size_t len,
int pe);

Retrieve contiguous data from a remote PE.
[funcname] can be anything in { short, int, float, double, long, longlong, longdouble }
[type] can be anything in { short, int, float, double, long, long long, long double }

void shmem_get[funcname](void *dest, void *src, size_t len, int pe);
Retrieve contiguous data from a remote PE.
[funcname] can be anything in { 32, 64, 128, mem }

void shmem_[funcname]_iget([type] *dest, const [type] *src,
size_t len, int pe);

Retrieve strided data from a remote PE.
[funcname] can be anything in { short, int, float, double, long, longlong, longdouble }
[type] can be anything in { short, int, float, double, long, long long, long double }

Library Routines (Continued)

Data Transfer Routines (Continued)

void shmem_[funcname]_p([type] *addr, int pe);
Write data of basic types to a remote PE.
[funcname] can be any of { short, int, float, double, long }
[type] can be any of { short, int, float, double, long }

void shmem_[funcname]_put([type] *dest, [type] *src, size_t len,
int pe);

Write contiguous data to a remote PE.
[funcname] can be any of { short, int, float, double, long, longlong, longdouble }
[type] can be any of { short, int, float, double, long, long long, long double }

void shmem_put[funcname](void *dest, void *src, size_t len, int pe);
Write contiguous data to a remote PE.
[funcname] can be any of { 32, 64, 128, mem }

void shmem_[funcname]_iput([type] *dest, const [type] *src,
size_t len, int pe);

Write strided data to a remote PE.
[funcname] can be any of { short, int, float, double, long, longlong, longdouble }
[type] can be any of { short, int, float, double, long, long long, long double }

Synchronization Routines

void shmem_barrier_all(void);
Suspend execution on the calling PE, until all other PEs reach this point of execution path.

void shmem_barrier(int PE_start, int logPE_stride, int PE_size,
long *pSync);

Suspend execution on the calling PE, until a subset of PEs, defined by PE_start,
logPE_stride and PE_size, reaches this point of execution path.

void shmem_fence(void);
Ensure ordering or remote put operations to a particular PE.

void shmem_quiet(void);
Ensure ordering or remote put operations to multiple Pes.

Symmetric Heap Routines

void *shmalloc(size_t size);
Allocates a memory block in the symmetric heap.

void *shrealloc(void *ptr, size_t size);
Adjust the size of a symmetric memory block.

Library Routines (Continued)

Symmetric Heap Routines (Continued)

void shfree(void *ptr);
Deallocates a symmetric memory block.

void *shmemalign(size_t alignment, size_t size);
Returns a symmetric memory block aligned with to the size specified by alignment.

Remote Pointer Routines

void *shmem_ptr(void *target, int pe);
Returns a pointer to a data object of a remote PE.

Collect Routines

void shmem_fcollect[bits](void *target, const void *source,
size_t nlong, int PE_start, int logPE_stride, int PE_size,
long *pSync);

Concatenate remote data objects and stores the result in a local data object. nlong must be
the same on all PEs.
[bits] can be any of { 32, 64 }

void shmem_collect[bits](void *target, const void *source,
size_t nlong, int PE_start, int logPE_stride, int PE_size,
long *pSync);

Concatenate remote data objects and stores the result in a local data object. nlong can vary
from PE to PE.
[bits] can be any of { 32, 64 }

Broadcast Routines

void shmem_broadcast[bits](void *target, const void *source,
size_t nlong, int PE_root, int PE_start, int logPE_stride,
int PE_size, long *pSync);

Write data to a symmetric data object on all PEs of the active set.
[bits] can be any of { 32, 64 }

Reduction Routines

void shmem_[funcname]_[opname]_to_all([type] *target, [type]
*source,

int nreduce, int PE_start, int logPE_stride, int PE_size,
int *pWrk, long *pSync);

Perform a reduction operation on symmetric data objects of all PEs in the active set.
[funcname] can be any of { short, int, float, double, long, longlong, longdouble }
[opname] can be any of { and, or, xor, sum, prod, max, min }
[type] can be any of { short, int, float, double, long, long long, long double }

SGI Specific Environment Variables

SMA_VERSION
Print library version at library startup.

SMA_INFO
Print helpful text about all these environment variables.

SMA_SYMMETRIC_SIZE
Number of bytes to allocate for the symmetric heap.

SMA_DEBUG
Enable debugging messages.

Reference Implementation Specific Environment Variables

SHMEM_LOG_LEVELS
A comma, space, semi-colon separated list of logging/trace facilities to enable debugging
messages. The facilities currently supported include the following case-sensitive names:

FATAL, DEBUG, INFO, NOTICE, AUTH, INIT, MEMORY, CACHE, BARRIER,
BROADCAST, COLLECT, REDUCE, SYMBOLS, LOCK, SERVICE, FENCE, QUIET

Please refer to the OpenSHMEM Reference Implementation design document for more
information about the facilities mentioned above.

SHMEM_LOG_FILE
A filename to which to write log messages.

SHMEM_SYMMETRIC_HEAP_SIZE
The number of bytes to allocate for the symmetric heap area. Can scale units with “K”, “M”
etc. modifiers. The default is 1M.

SHMEM_BARRIER_ALGORITHM
The version of the barrier to use. The default is “naive”. Designed to allow people to plug
other variants in easily and test.

SHMEM_BARRIER_ALGORITHM_ALL
As for SHMEM_BARRIER_ALGORITHM, but separating these two allows us to optimize if
e.g. hardware has special support for global barriers.

SHMEM_PE_ACCESSIBLE_TIMEOUT
The number of seconds to wait for PEs to reply to accessibility checks. The default is 1.0 (i.e
may be fractional).

Environment Variables

