
SINGLE-SIDED PGAS

COMMUNICATIONS

LIBRARIES
Parallel Programming Languages and Approaches

Parallel Programming Languages 2

Contents

• A Little Bit of History

• Non-Parallel Programming Languages

• Early Parallel Languages

• Current Status of Parallel Programming

• Parallelisation Strategies

• Mainstream HPC

• Alternative Parallel Programming Languages

• Single-Sided Communication

• PGAS

• Final Remarks and Summary

Parallel Programming Languages 3

Non-Parallel Programming Languages

• Serial languages important
• General scientific computing
• Basis for parallel languages

• PRACE Survey results:

• PRACE Survey indicates that nearly all applications are written in:
• Fortran: well suited for scientific computing
• C/C++: allows good access to hardware

• Supplemented by
• Scripts using Python, PERL and BASH
• PGAS languages starting to be used

0 50 100 150 200 250

Co-array Fortran

Chapel

Java

Other

Perl

Python

C++

C

Fortran

Response Count

Parallel Programming Languages 4

Data Parallel

• Processors perform similar operations across elements in an array

• Higher level programming paradigm, characterised by:

• single-threaded control

• global name space

• loosely synchronous processes

• parallelism implied by operations applied to data

• compiler directives

• Data parallel languages: generally serial language (e.g., F90) plus

• compiler directives (e.g., for data distribution)

• first class language constructs to support parallelism

• new intrinsics and library functions

• Paradigm well suited to a number of early (SIMD) parallel computers

• Connection Machine, DAP, MasPar,…

Parallel Programming Languages 5

Data Parallel II

• Many data parallel languages implemented:

• Fortran-Plus, DAP Fortran, MP Fortran, CM Fortran, *LISP, C*,

CRAFT, Fortran D, Vienna Fortran

• Languages expressed data parallel operations differently

• Machine-specific languages meant poor portability

• Needed a portable standard: High Performance Fortran

• Easy to port codes to, but performance could rarely match

that from message passing codes

• Struggled to gain broad popularity

Parallel Programming Languages 6

Parallelisation Strategies
• PRACE asked more than 400 European HPC users

• “Which parallelisation implementations do you use?”

• Unsurprisingly, most popular answers were MPI and/or OpenMP

• Some users of Single-Sided communications

0 50 100 150 200 250

HPF

SHMEM

Combined MPI+SHMEM

Combined MPI+Posix threads

Other

Posix threads

MPI, including MPI-2 single-sided

Combined MPI+OpenMP

OpenMP

MPI

Response Count

Parallel Programming Languages 7

Parallelisation Strategies II
• PRACE also asked users of very largest systems:

• “Which parallelisation method does your application use?”

• Most popular: “MPI Only” and “Combined MPI+OpenMP”
• 12% used single-sided routines

Parallel Programming Languages 8

Mainstream HPC

• For the last 15+years, most HPC cycles on large systems have been

used to run MPI programs, written in Fortran or C/C++

• Plus OpenMP used on shared memory systems/nodes

• However, there are now reasons why this may be changing:

• Currently, HPC systems have increasingly large numbers of cores, but the
individual core performance is relatively static

• There are new challenges in exploiting future Exascale systems

• So, alongside mainstream HPC, there is also significant activity in:

• Single-sided communication

• PGAS languages

• Accelerators

• Hybrid approaches

Parallel Programming Languages 9

Shared Memory

•Multiple threads sharing global memory

•Developed for systems with shared memory (MIMD-SM)

•Program loop iterations can be distributed to threads

• Each thread can refer to private objects within a parallel context

• Implementation

• Threads map to user threads running on one shared memory node

• Extensions to distributed memory not so successful

•Posix Threads/PThreads is a portable standard for threading

•Vendors had various shared-memory directives

•OpenMP developed as common standard for HPC

• OpenMP is a good model to use within a node

• More recent task features

Parallel Programming Languages 10

Message Passing

• Processes cooperate to solve problem by exchanging data

• Can be used on most architectures

• Especially suited for distributed memory systems (MIMD-DM)

• The message passing model is based on the notion of processes

• Process: an instance of a running program, together with its data

• Each process has access only to its own data

• i.e., all variables are private

• Processes communicate by sending+receiving messages

• Typically library calls from a conventional sequential language

• During the 1980s, an explosion in languages and libraries

• CS Tools, OCCAM, CHIMP (developed by EPCC), PVM, PARMACS, …

Parallel Programming Languages 11

MPI: Message Passing Interface

• De facto standard developed by working group of around 60 vendors

and researchers from 40 organisations in USA and Europe

• Took two years

• MPI-1 released in 1993

• Built on experiences from previous message passing libraries

• MPI's prime goals are:

• To provide source-code portability

• To allow efficient implementation

• MPI-2 was released in 1996

• New features: parallel I/O, dynamic process management and remote

memory operations (single-sided communication)

• Now, MPI is used by nearly all message-passing programs

Parallel Programming Languages 12

Single-Sided Communication

• Allows direct access to memory of other processors

• Process can access total memory, even on distributed memory systems

• Simpler protocol can bring performance benefits

• But requires thinking about synchronisation, remote addresses, caching...

• Key routines

• PUT is a remote write

• GET is a remote read

• Libraries give PGAS functionality

• Vendor-specific libraries

• SHMEM (Cray/SGI), LAPI (IBM)

• Portable implementations

• MPI-2, OpenSHMEM

Parallel Programming Languages 13

Single-Sided Communication

• Single-sided comms a major part of MPI-2 standard

• Quite general and portable to most platforms

• However, portability and robustness can have an impact on latency

• Quite complicated and messy to use

• Better performance from lower-level interfaces e.g.SHMEM

• Originally developed by Cray but a variety of similar implementations

were developed on other platforms

• Simple interface but hard to program correctly

• OpenSHMEM

• New initiative to provide standard interface

• See http://www.openshmem.org

Parallel Programming Languages 14

•Access to local memory via standard program mechanisms plus

access to remote memory directly supported by language

•The combination of access to all data plus also exploiting

locality could give good performance and scaling

•Well suited to modern MIMD systems with multicore (shared

memory) nodes

•Newly popular approach initially driven by US funding

• Productive, Easy-to-use, Reliable Computing System (PERCS) project

funded by DARPA’s High Productivity Computing Systems (HPCS)

Partitioned Global Address Space

Parallel Programming Languages 15

PGAS II

•Currently active and enthusiastic community

•Very wide variety of languages under the PGAS banner

• See http://www.pgas.org

• Including: CAF, UPC, Titanium, Fortress, X10, CAF 2.0, Chapel,

Global Arrays, HPF?, …

•Often, these languages have more differences than

similarities…

http://www.pgas.org/

Parallel Programming Languages 16

PGAS Languages

• Broad range of PGAS languages makes it difficult to choose

• Currently, CAF and UPC are probably most relevant

• Cray’s compilers and hardware now support CAF and UPC in quite

an efficient manner

• CAF: Fortran with Coarrays

• Minimal addition to Fortran to support parallelism

• Incorporated in Fortran 2008 standard!

• UPC: Unified Parallel C

• Adding parallel features to C

Parallel Programming Languages 17

Why do Languages Survive or Die?

• It is not always entirely clear why some languages and

approaches thrive while others fade away…

• However, languages which survive do have a number of

common characteristics

• Appropriate model for current hardware

• Good portability

• Ease of use

• Applicable to a broad range of problems

• Strong engagement from both vendors and user communities

• Efficient implementations available

PGAS Libraries

• This course focuses on PGAS libraries – why?

• Language neutral

• can program in either C or Fortran

• Does not require compiler functionality

• greater portability between platforms

• PGAS languages often layered on single-sided libraries

• learning library helps understanding of language characteristics

• Cray architectures have very good PGAS performance

Parallel Programming Languages 19

Summary

• Development of portable standards have been essential

for uptake of new parallel programming ideas

• Mainstream HPC is currently based on MPI and OpenMP

• However, there are alternatives

• Exascale challenges have injected new life into novel

parallel programming languages and approaches

• The remainder of this course focuses on PGAS libraries

Parallel Programming Languages 20

References

• PRACE-PP

• D6.1: Identification and Categorisation of Applications

and Initial Benchmarks Suite, Alan Simpson, Mark Bull and Jon Hill,

EPCC

• PRACE-1IP

• D7.4.1: Applications and user requirements for Tier-0 systems, Mark

Bull (EPCC), Xu Guo (EPCC) and Ioannis Liabotis (GRNET)

• D7.4.3: Tier-0 Applications and Systems Usage, Xu Guo and Mark Bull,

EPCC

