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Schedule 
• 9:30h – 11:00h Introduction to GASPI 
• 11:00h-11:30h  break 
• 11:30h-13:00h Segments 
• 13:00h-14:00h lunch 
• 14:00h-15:30h Single sided communication 
• 15:30h-16:00h Break 
• 16:00h-17:30h GASPI programming model 
• 17:30h   end 



Round of Introductions 
• Who are you? 
• What are you doing? 
• How did you get in contact with GASPI? 
• What is your interest in / expectation to 

GASPI? 



Goals 
• Get an overview over GASPI 
• Learn how to  

– Compile a GASPI program 
– Execute a GASPI program 

• Get used to the GASPI programming model 
– one-sided communication  
– weak synchronization 
– asynchronous patterns / dataflow implementations 

 
 



Outline 
• Introduction to GASPI 
• GASPI API 

– Execution model 
– Memory segments 
– One-sided communication 
– Collectives 
– Passive communication 

 



Outline 
• GASPI programming model 

– Dataflow model 
– Fault tolerance 

 

www.gaspi.de www.gpi-site.com 



Installation 
• Tutorial code and documentation: 

git clone https://github.com/GASPI-Forum/GASPI-
Standard.git 

• GPI-2 - GASPI Implementation: 
git clone https://github.com/cc-hpc-itwm/GPI-2.git 
– install.sh –p $HOME/GPI-2.foo 

native GASPI version, start application with gaspi_run 
– install.sh –p $HOME/GPI-2.bar –with-mpi=MPI_ROOT 

mpi interoperable version, start application with mpirun 
 

 

https://github.com/GASPI-Forum/GASPI-Standard.git
https://github.com/GASPI-Forum/GASPI-Standard.git
https://github.com/cc-hpc-itwm/GPI-2.git


Introduction to GASPI 



GASPI at a Glance 

Nuts and Bolts for Communication Engines 



GASPI at a Glance 
Features: 

• Global partitioned address space 

• Asynchronous, one-sided 
communication 

• Threadsave, every thread can 
communicate 

• Supports fault tolerance 

• Open Source 

• Standardized API (GASPI) 

Infiniband, Cray, Ethernet, GPUs, Intel Xeon Phi, 
Open Source (GPL) , standardized API 

tested on up  
to 65k cores! 



GASPI History 
 

• GPI is the implementation of the GASPI standard 
– originally called Fraunhofer Virtual Machine (FVM) 
– developed since 2005 
– used in many of the industry projects at CC-HPC of 

Fraunhofer ITWM 

 
 

 

 
Winner of the „Joseph von Fraunhofer Preis 2013“ 
Finalist of the „European Innovation Radar 2016“. 
 

        www.gpi-site.com 

 
 

 



Founding 
Members 

GASPI  
Standardization Forum 



 GASPI in  
European Exascale Projects 

 

 
 



Visualization CFD 

Machine Learning 
Big Data 
Iterative Solvers Seismic Imaging & Algorithms 

Some GASPI Applications 



Concepts: Communication 

GASPI is a 
communication  

library 
What is 

communi-
cation? 

Data Transfer 

Synchronisation 



Concepts:  
One-Sided Communication 

• One-sided operations between parallel processes 
include remote reads and writes 

• Data can be accessed without participation of the 
remote site  

• The initiator specifies all parameters 
– Source location 
– Target location 
– Message size 

 



Concepts:  
Segments 

• Data can be accessed 
without participation of the 
remote site.  

• Remote sides have to know 
about designated communi-
cation area(s) before hand 

• Designated communication 
areas in GASPI are called 
segments 

 

Node 1 
 
 
 
 
 
 
 
 
 
 

 

Node 2 
 
 
 
 
 
 
 
 
 
 

 

Segment 1 
 

Segment 2 

Segment 1 

Segment 2 
 
 

Segment 3 

Segment 4 



Concepts:  
Segments 

Application has to manage data 
transfer completely: 
• Specify which part of the 

segment will be transferred 
(offset and size)  

 

Node 1 
 
 
 
 
 
 
 
 
 
 

 

Node 2 
 
 
 
 
 
 
 
 
 
 

 

Segment 1 
 
 

Segment 2 

Segment 1 

Segment 2 
 
 
 

Segment 3 

Segment 4 
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Concepts:  
one-sided Communication 

• One-sided operations between 
parallel processes include remote 
reads and writes.  

• Data can be accessed without 
participation of the remote site.  

• One-sided communication is non-
blocking: communication is 
triggered but may not be finished 

Node 1 Node 2 
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write 



Concepts:  
one-sided Communication 

• Node 2 has not participated, 
it does not know that 
communication has started 

Node 1 Node 2 

Ti
m

e 
ax

is 

write 



Concepts:  
Synchronisation with Notifications 
• Node 2 has not participated, 

it does not know that 
communication has started 

• It has to be notified. 

Node 1 Node 2 

Ti
m

e 
ax

is 

write 

notify 



Concepts:  
Synchronisation with Notifications 
• Node 2 has not participated, 

it does not know that 
communication has started 

• It has to be notified for data 
movement completion. 

• Node 1 does not know if the 
write has finished. 

• If it needs to know, it also 
has to be notified 

Node 1 Node 2 

Ti
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e 
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is 

write 

notify 

notify 



Concepts: overlap of 
Communication and Computation 

• Due to the non-blocking 
nature of the call Node 1 has 
gained some computation 
time which it can use 

• Communication and 
computation happen in 
parallel 

• Communication latency is 
hidden 

Node 1 Node 2 
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Concepts: Warning! 
 

• Data synchronisation by wait 
+ barrier  does not work! 

• Wait does wait on local 
queue on Node 1, does not 
know about write in Node 2, 
barrier() has no relation with 
communication 

• Data synchronization only by 
notifications 

Node 1 Node 2 

Ti
m
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ax

is 

write 

wait 

barrier barrier 



Concepts: 
Communication Queues 

• Communication requests are 
posted to queues 

• Queues are a local concept! 
• Used to separate concerns 

between different parts of 
the applications 

• Queues are used in order to 
establish the  
synchronization context. 

Node 1 Node 2 Node 3 

 
 
 
 
 

Communication  
agnostic to queues 

 
 

Queue 1: e.g. used by main app.  

Queue 2: e.g. used by library  

Incoming data agnostic of queue  



The GASPI API 
• 52 communication functions 
• 24 getter/setter functions 
• 108 pages 
  … but in reality: 

– Init/Term 
– Segments 
– Read/Write 
– Passive Communication 
– Global Atomic Operations 
– Groups and collectives 

 
www.gaspi.de 
 



Execution Model 



GASPI Execution Model 
• SPMD / MPMD execution model 
• All procedures have prefix gaspi_ 

 
 

• All procedures have a return value 
• Timeout mechanism for potentially blocking 

procedures 



GASPI Return Values 
• Procedure return values: 

– GASPI_SUCCESS 
• designated operation successfully completed 

– GASPI_TIMEOUT 
• designated operation could not be finished in the given time 
• not necessarily an error 
• the procedure has to be invoked subsequently in order to fully 

complete the designated operation 

– GASPI_QUEUE_FULL 
• Request could not be posted to queue. End of queue has been 

reached, change queue or wait 
– GASPI_ERROR 

• designated operation failed -> check error vector 

• Advice: Always check return value ! 



success_or_die.h 
#ifndef SUCCESS_OR_DIE_H 
#define SUCCESS_OR_DIE_H 
 
#include <GASPI.h> 
#include <stdlib.h> 
 
#define SUCCESS_OR_DIE(f...)  \   
do                             \   
{                                 \     
  const gaspi_return_t r = f;  \                                                        
           \     
  if (r != GASPI_SUCCESS)        \     
  {           \       
      printf ("Error: '%s' [%s:%i]: %i\n", #f, __FILE__, __LINE__, r);\                                                                        
      exit (EXIT_FAILURE);        \     
   }                              \   
} while (0) 
 
#endif 



Timeout Mechanism 
• Mechanism for potentially blocking procedures 

– procedure is guaranteed to return 
• Timeout: gaspi_timeout_t 

– GASPI_TEST (0) 
• procedure completes local operations 
• Procedure does not wait for data from other processes 

– GASPI_BLOCK (-1) 
• wait indefinitely (blocking) 

– Value > 0  
• Maximum time in msec the procedure is going to wait for data 

from other ranks to make progress 
• != hard execution time 

 



GASPI Process Management 
• Initialize / Finalize 

– gaspi_proc_init 
– gaspi_proc_term 

• Process identification 
– gaspi_proc_rank 
– gaspi_proc_num 

• Process configuration 
– gaspi_config_get 
– gaspi_config_set 



GASPI Initialization 
• gaspi_proc_init 

– initialization of resources 
• set up of communication infrastructure if requested 
• set up of default group GASPI_GROUP_ALL 
• rank assignment  

– position in machinefile  rank ID 

– no default segment creation 



GASPI Finalization 
• gaspi_proc_term 

– clean up 
• wait for outstanding communication to be finished 
• release resources 

– no collective operation ! 
 



GASPI Process Identification 
• gaspi_proc_rank 

• gaspi_proc_num 



GASPI Startup 
• gaspi_run 

 
Usage:  
gaspi_run –m <machinefile>[OPTIONS] <path2bin> 
 
Available options: 
 -b <binary file> Use a different binary for  
        master 
 -N       Enable NUMA for procs on same 
        node 
 -n <procs>    start as many <procs> from  
        machinefile 
 -d         Run with gdb on master node 
 
 



GASPI Startup 
• aprun 

 
Usage:  
aprun –n <procs> -d <threadsperproc> <path2bin> 
 
Available options: 
 -n       Number of processes to start 
 -d       Number of threads per process 
 
 



Build a GASPI program 
• module load gpi2/1.3.0 
• module swap PrgEnv-cray PrgEnv-gnu 
• link the library  

– GPI2 for production  
– GPI2-dbg for development 

• GPI2-dbg has several consistency checks -> more useful error messages 
 
 
 



Hello world – Hands on 
• Write a GASPI „Hello World“ program which outputs 

 
 Hello world from rank xxx of yyy 

 
– Use hands_on/helloworld.c as starting point 
– Use SUCCESS_OR_DIE macro to check for return values 
– Use the debug library (libGPI2-dbg.a) 

 
• Execute the Hello World program 
 
 

 
 
 



GASPI „hello world“ 
#include "success_or_die.h“ 
#include <GASPI.h> 
#include <stdlib.h> 
 
int main(int argc, char *argv[]) 
{    
  SUCCESS_OR_DIE( gaspi_proc_init(GASPI_BLOCK) );    
 
  gaspi_rank_t rank; 
  gaspi_rank_t num;    
  SUCCESS_OR_DIE( gaspi_proc_rank(&rank) );   
  SUCCESS_OR_DIE( gaspi_proc_num(&num) );    
  
  printf("Hello world from rank %d of %d\n",rank, num);    
 
  SUCCESS_OR_DIE( gaspi_proc_term(GASPI_BLOCK) );    
  return EXIT_SUCCESS; 
} 



Memory Segments 



Segments 



Segments 
• Software abstraction of hardware memory hierarchy 

– NUMA  
– GPU  
– Xeon Phi 

• One partition of the PGAS 
• Contiguous block of virtual memory 

– no pre-defined memory model  
– memory management up to the application 

• Locally / remotely accessible 
– local access by ordinary memory operations 
– remote access by GASPI communication routines 



GASPI Segments 
• GASPI provides only a few relatively large segments 

– segment allocation is expensive 
– the total number of supported segments is limited by 

hardware constraints 

• GASPI segments have an allocation policy 
– GASPI_MEM_UNINITIALIZED 

• memory is not initialized 

– GASPI_MEM_INITIALIZED 
• memory is initialized (zeroed) 

 



Segment Functions 
• Segment creation 

– gaspi_segment_alloc 
– gaspi_segment_register 
– gaspi_segment_create 

• Segment deletion 
– gaspi_segment_delete 

• Segment utilities 
– gaspi_segment_num 
– gaspi_segment_ptr 

 



• gaspi_segment_alloc 
 

– allocate and pin for RDMA 
– Locally accessible 

 

GASPI Segment Allocation  

• gaspi_segment register 

– segment accessible by rank 
 



GASPI Segment Creation  
• gaspi_segment_create 

 

– Collective short cut to  
• gaspi_segment_alloc 
• gaspi_segment_register 

– After successful completion, the segment is locally 
and remotely accessible by all ranks in the group 



GASPI Segment with given Buffer 
• gaspi_segment_bind 

 
 
 

• Binds a buffer to a particular segment 
• Same capabilities as allocated/created segment 
• Locally accessible (requires gaspi_segment_register) 

 
 

 
 



GASPI Segment with given Buffer 
• gaspi_segment_use 

 
 
 
 

• Equivalent to 
 



GASPI Segment Deletion  
• gaspi_segment_delete 

– Free segment memory 
 



GASPI Segment Utils 
• gaspi_segment_num 

• gaspi_segment_ptr 

• gaspi_segment_list 



GASPI Segment Utils 
• gaspi_segment_max 

• Maximum number of segments 
• Defines range of allowed segment IDs  

[0,segment_max - 1) 



Using Segments – Hands on 
• Write a GASPI program which stores a NxM matrix in a 

distributed way: 1 row per process 
 
 
 
 
 
– Create a segment 
– Initialize the segment 

 
 
– output the result 

 

0 1 … M-1 

M M+1 … 2M-1 

(N-1)M (N-1)M+1 … NM-1 

Row 0 Row 1 Row N-1 



Using Segments (I) 
// includes 
 
int main(int argc, char *argv[])  
{   
 static const int VLEN = 1 << 2;     
 SUCCESS_OR_DIE( gaspi_proc_init(GASPI_BLOCK) );    
    gaspi_rank_t iProc, nProc; 
    SUCCESS_OR_DIE( gaspi_proc_rank(&iProc));   
    SUCCESS_OR_DIE( gaspi_proc_num(&nProc));  
 
 gaspi_segment_id_t const segment_id = 0;   
 gaspi_size_t       const segment_size = VLEN * sizeof (double);   
 
 SUCCESS_OR_DIE ( gaspi_segment_create ( segment_id, segment_size                       
            , GASPI_GROUP_ALL, GASPI_BLOCK 
                                          , GASPI_MEM_UNINITIALIZED ) );       
 
  



Using Segments (II) 
 
      gaspi_pointer_t array;   
 SUCCESS_OR_DIE( gaspi_segment_ptr (segment_id, &array) );     
 
 for (int j = 0; j < VLEN; ++j)   
   {       
  ((double *)array )[j]= (double)( iProc * VLEN + j );  
    printf( "rank %d elem %d: %f \n„ 
                      , iProc,j,( (double *)array )[j] );     
   }  
   
 SUCCESS_OR_DIE( gaspi_proc_term(GASPI_BLOCK) );    
 return EXIT_SUCCESS; 
} 



One-sided Communication 



GASPI One-sided Communication 
• gaspi_write 

– Post a put request into a given queue for transfering data 
from a local segment into a remote segment 



• gaspi_read 

GASPI One-sided Communication 

– Post a get request into a given queue for transfering data 
from a remote segment into a local segment 



• gaspi_wait 

GASPI One-sided Communication 

– Wait on local completion of all requests in a given queue 
– After successfull completion, all involved local buffers are 

valid 



Queues (I) 
• Different queues available to handle the 

communication requests 
• Requests to be submitted to one of the supported 

queues 
• Advantages 

– More scalability 
– Channels for different types of requests 
– Similar types of requests are queued and synchronized 

together but independently from other ones 
– Separation of concerns 
– Asynchronous execution, thin abstraction of HW queues. 



Queues (II) 
• Fairness of transfers posted to different queues is 

guaranteed 
– No queue should see ist communication requests delayed 

indefinitely 
• A queue is identified by its ID 
• Synchronization of calls by the queue 
• Queue order does not imply message order on the 

network / remote memory 
• A subsequent notify call is guaranteed to be non-

overtaking for all previous posts to the same queue 
and rank 
 



Queues (III) 
• Queues have a finite capacity 
• Queues are not automatically flushed 

– Maximize time between posting the last request 
and flushing the queue (qwait) 

• Return value GASPI_QUEUE_FULL indicates full 
queue. 



GASPI Queue Utils 
• gaspi_queue_size 

• gaspi_queue_size_max 



GASPI Queue Utils 
• gaspi_queue_num 

• gaspi_queue_max 



GASPI Queue Utils 
• gaspi_queue_create 

• gaspi_queue_delete 



write_and_wait 
• serial wait on queue 
• sanity checks 



•   cycle through queues 
•   sanity checks 
 

write_notify_and_cycle 



wait_for_flush_queues 
• flush all queues  



Data Synchronization By Notification 
• One sided-communication: 

– Entire communication managed by the local 
process only 

– Remote process is not involved 
– Advantage: no inherent synchronization between 

the local and the remote process in every 
communication request 

• Still: At some point the remote process needs 
knowledge about data availability 
– Managed by notification mechanism 



GASPI Notification Mechanism 
• Several notifications for a given segment 

– Identified by notification ID 
– Logical association of memory location and 

notification 

 



• gaspi_notify 

GASPI Notification Mechanism 

– Posts a notification with a given value to a given 
queue 

– Remote visibility guarantees remote data visibility 
of all previously posted writes in the same queue, 
the same segment and the same process rank 



• gaspi_notify_waitsome 

GASPI Notification Mechanism 

– Monitors a contiguous subset of notification id‘s 
for a given segment 

– Returns successfull if at least one of the 
monitored id‘s is remotely updated to a value 
unequal zero 



• gaspi_notify_reset 

GASPI Notification Mechanism 

– Atomically resets a given notification id and yields 
the old value 



wait_or_die 
• Wait for a given 

notification and reset  
• Sanity checks 



test_or_die 
• Test for a given notification 

and reset  
• Sanity checks 



Extended One-sided Calls 
• gaspi_write_notify 

– write + subsequent gaspi_notify, unordered with respect to „other“ 
writes.  

• gaspi_write_list 
– several subsequent gaspi_writes to the same rank 

• gaspi_write_list_notify 
– gaspi_write_list + subsequent gaspi_notify, non-ordered with respect to 

„other“ writes.  
• gaspi_read_list 

– Several subsequent read from the same rank. 
• gaspi_read_notify 

– read + subsequent gaspi_notify, unordered with respect to „other“ 
writes.  
 

Hardware Optimized 



GASPI extended one-sided 
• gaspi_write_notify 

– gaspi_write with subsequent gaspi_notify 
– Unordered relative to other communication (!) 
 



GASPI extended one-sided 
• gaspi_write_list 

– Several subsequent gaspi_write  



GASPI extended one-sided 
• gaspi_write_list_notify 

– several subsequent gaspi_write and a notification 
– Unordered relative to other communication (!) 



GASPI extended one-sided 
• gaspi_read_list 

– several subsequent gaspi_read 



• gaspi_read_notify 

– „gaspi_read with subsequent gaspi_notify“ 
– Unordered relative to other communication (!) 

GASPI extended one-sided 



Communication – Hands on 
• Take your GASPI program which stores a NxM matrix in a 

distributed way and extend it by communication for rows 
 
 
 
 
 
 
 
– Create a segment ( sufficient size for a source and target row) 
– Initialize the segment 

 
 

 
 
 
 
 

 
 

0 1 … M-1 

M M+1 … 2M-1 

(N-1)M (N-1)M+1 … NM-1 

Row 0 Row 1 Row N-1 



Communication – Hands on 
• Take your GASPI program which stores a NxM matrix in a 

distributed way and extend it by communication 
– Communicate your  row to your right neighbour (periodic BC) 

 
 
 
 
 
 
 
 

– Check that the data is available 
– Output the result 

 
 

 
 
 
 
 

 
 

Row 0 Row N-1 Row 1 Row 0 Row N-1 Row N-2 

write_notify notify_waitsome 



onesided.c (I) 
// includes  
 
int main(int argc, char *argv[]) 
{   
  static const int VLEN = 1 << 2;     
  SUCCESS_OR_DIE( gaspi_proc_init(GASPI_BLOCK) ); 
  gaspi_rank_t iProc, nProc; 
  SUCCESS_OR_DIE( gaspi_proc_rank(&iProc));   
  SUCCESS_OR_DIE( gaspi_proc_num(&nProc));  
  gaspi_segment_id_t const segment_id = 0;   
  gaspi_size_t       const segment_size = 2 * VLEN * sizeof (double);   
 
  SUCCESS_OR_DIE ( gaspi_segment_create ( segment_id, segment_size                            
              , GASPI_GROUP_ALL, GASPI_BLOCK 
                                        , GASPI_MEM_UNINITIALIZED ) ); 
  gaspi_pointer_t array;   
  SUCCESS_OR_DIE ( gaspi_segment_ptr (segment_id, &array) ); 
  double * src_array = (double *)(array);  
  double * rcv_array = src_array + VLEN;  
 
  for (int j = 0; j < VLEN; ++j) {  
    src_array[j]= (double)( iProc * VLEN + j ); }  



 
  gaspi_notification_id_t data_available = 0;   
  gaspi_offset_t loc_off = 0;  
  gaspi_offset_t rem_off = VLEN * sizeof (double);   
  write_notify_and_cycle ( segment_id 
                           , loc_off 
                           , RIGHT (iProc, nProc) 
                           , segment_id 
                           , rem_off 
                           , VLEN * sizeof (double) 
                           , data_available 
                           , 1 + iProc 
                           ); 
  wait_or_die (segment_id, data_available, 1 + LEFT (iProc, nProc) );    
  for (int j = 0; j < VLEN; ++j)     
  { printf("rank %d rcv elem %d: %f \n", iProc,j,rcv_array[j] );    }     
  wait_for_flush_queues();    
  SUCCESS_OR_DIE( gaspi_proc_term(GASPI_BLOCK) );    
  return EXIT_SUCCESS;} 
 

 /* write, cycle if required and re-submit */ 
  while ((ret = ( gaspi_write_notify( segment_id_local, offset_local, rank, 
                                      segment_id_remote, offset_remote, size, 
                                      notification_id, notification_value, 
                                      my_queue, timeout) 
                  )) == GASPI_QUEUE_FULL) { 
      my_queue = (my_queue + 1) % queue_num; 
      SUCCESS_OR_DIE (gaspi_wait (my_queue, 
                                  GASPI_BLOCK)); 
  } 
  ASSERT (ret == GASPI_SUCCESS); 



GPI 2.0 - Bandwidth 



Collectives 



Collective Operations (I) 
• Collectivity with respect to a definable subset of 

ranks (groups) 
– Each GASPI process can participate in more than one group 
– Defining a group is a three step procedure 

• gaspi_group_create 
• gaspi_group_add 
• gaspi_group_commit 
 

– GASPI_GROUP_ALL is a predefined group containing all 
processes 

  
 



Collective Operations (II) 
• All gaspi processes forming a given group have to 

invoke the operation 
• In case of a timeout (GASPI_TIMEOUT), the 

operation is continued in the next call of the 
procedure 

• A collective operation may involve several procedure 
calls until completion 

• Completion is indicated by return value 
GASPI_SUCCESS 
 



Collective Operations (III) 
• Collective operations are exclusive per group 

– Only one collective operation of a given type on a 
given group at a given time 

– Otherwise: undefined behaviour 
• Example 

– Two allreduce operations for one group can not 
run at the same time 

– An allreduce operation and a barrier are allowed 
to run at the same time 



Collective Functions 
• Built in: 

– gaspi_barrier 
– gaspi_allreduce 

• GASPI_OP_MIN, GASPI_OP_MAX, GASPI_OP_SUM 
• GASPI_TYPE_INT, GASPI_TYPE_UINT, 

GASPI_TYPE_LONG, GASPI_TYPE_ULONG, 
GASPI_TYPE_FLOAT, GASPI_TYPE_DOUBLE 

• User defined 
– gaspi_allreduce user 

 



• gaspi_barrier 

GASPI Collective Function 

• gaspi_allreduce 



Passive communication 



Passive Communication Functions (I) 
• 2 sided semantics send/recv 

– gaspi_passive_send  
 
 
 
 

• time based blocking 

 



Passive Communication Functions (II) 
– Gaspi_passive receive 

 
 
 
 

• Time based blocking 
• Sends calling thread to sleep 
• Wakes up calling thread in case of incoming message or 

given timeout has been reached 
 
 

 



Passive Communication Functions (III) 
 

• Higher latency than one-sided comm. 
– Use cases: 

• Parameter exchange 
• management tasks  
• „Passive“ Active Messages (see advanced tutorial code) 

– GASPI Swiss Army Knife. 
 



Passive Communication Functions (III) 
• Example: Negotiate offsets for alltoallV 

communication 
• Set local send offsets, local receive offsets and remote 

receive offsets. 
• Use passive communication for serializing incoming traffic 

in order to determine linear alltoallV workarrays. 
• Use passive communication to trigger remote printing of 

received data.  
 
 



Passive Communication Functions (IV) 

void *handle_passive(void *arg) 
{ 
  gaspi_pointer_t _vptr; 
  SUCCESS_OR_DIE(gaspi_segment_ptr(passive_segment, &_vptr));  
  const gaspi_offset_t passive_offset = sizeof(packet);   
  while(1) 
    { 
      gaspi_rank_t sender; 
      SUCCESS_OR_DIE(gaspi_passive_receive(passive_segment 
                                           , passive_offset 
                                           , &sender 
                                           , sizeof(packet) 
                                           , GASPI_BLOCK 
                                           )); 
      packet *t = (packet *) ((char*)_vptr + sizeof(packet)); 
      return_offset(t->rank, t->len, t->offset) 
    } 
return NULL; 



Fault Tolerance 



Features 
• Implementation of fault tolerance is up to the 

application 
• But: well defined and requestable state guaranteed 

at any time by 
– Timeout mechanism 

• Potentially blocking routines equipped with timeout 
– Error vector 

• contains health state of communication partners 
– Dynamic node set 

• substitution of failed processes 



Interoperability with MPI 



Interoperability with MPI 

• GASPI supports interoperability with MPI in a so-called mixed-
mode. 

• The mixed-mode allows for  
– either entirely porting an MPI application to GASPI 
– or replacing performance-critical parts of an MPI based 

application with GASPI code (useful when dealing with 
large MPI code bases) 

• Porting guides available at: 
  http://www.gpi-site.com/gpi2/docs/whitepapers/ 



Mixing GASPI and MPI  
in Parallel Programs 

• GASPI must be installed with MPI 
support, using the option 

--with-mpi  <path_to_mpi_installation> 

• MPI must be initialized before   
GASPI, as shown in the joined 
example 
• The same command or script as 
the one provided by the MPI 
installation  should be used for 
starting  programs (mpirun or similar) 
• gaspi_run should not be used! 

#include <assert.h> 
#include <GASPI.h> 
#include <mpi.h> 
 
int main (int argc, char *argv[]) 
{ 
  // initialize MPI and GASPI 
  MPI_Init (&argc, &argv); 
  gaspi_proc_init (GASPI_BLOCK); 
 
  // Do work … 
 
  // shutdown GASPI and MPI 
  gaspi_proc_term (GASPI_BLOCK); 
  MPI_Finalize(); 
 
  return 0; 
} 



GASPI Preserves the MPI Ranks  
• GASPI is able to detect at 

runtime the MPI 
environment and to setup 
its own environment 
based on this 

• GASPI can deliver the 
same information about 
ranks and number of 
processes as MPI 

• This  helps to preserve   
the application logic 

… 
 
int nProc_MPI, iProc_MPI; 
gaspi_rank_t iProc, nProc; 
 
MPI_Init(&argc, &argv); 
MPI_Comm_rank (MPI_COMM_WORLD, &iProc_MPI); 
MPI_Comm_size (MPI_COMM_WORLD, &nProc_MPI); 
 
SUCCESS_OR_DIE (gaspi_proc_ini(GASPI_BLOCK)); 
SUCCESS_OR_DIE (gaspi_proc_rank (&iProc)); 
SUCCESS_OR_DIE (gaspi_proc_num (&nProc)); 
 
ASSERT(iProc == iProc_MPI); 
ASSERT(nProc == nProc_MPI); 
 
… 
 



Using User Provided  
Memory for Segments  

//initialize and allocate memory  

double *buffer = calloc ( num_elements                
        , sizeof(double) 

                         ); 

gaspi_segment_id_t segment_id = 0; 

 

//use the allocated buffer as underlying 
//memory support for a segment 

SUCCESS_OR_DIE 

  ( gaspi_segment_use 

  , segment_id 

  , buffer 

  , n*sizeof (double) 

  , GASPI_GROUP_ALL 

  , GASPI_BLOCK 

  , 0 

  ); 

• New feature added in 
version 1.3 of GASPI: a user 
may provide already allocated 
memory for segments 
• Memory used in MPI 
communication can be used in 
GASPI communication 
• However, the feature 
should be used with care 
because the segment creation 
is an expensive operation 



Using GASPI Segment Allocated 
Memory in MPI Communication 

// allgatherV 

 SUCCESS_OR_DIE (gaspi_segment_create ( segment_id 

               , vlen * sizeof(int), GASPI_GROUP_ALL, GASPI_BLOCK 

               , GASPI_ALLOC_DEFAULT)); 

 

  gaspi_pointer_t _ptr = NULL; 

  SUCCESS_OR_DIE (gaspi_segment_ptr (segment_id, &_ptr)); 

  int *array = (int *) _ptr; 

  init_array(array, offset, size, iProc, nProc); 

 

  MPI_Allgatherv(&array[offset[iProc]], size[iProc], MPI_INT 

                 , array, size, offset, MPI_INT, MPI_COMM_WORLD); 



Mixing MPI Code with  
GASPI Code From a Library 

int n, my_mpi_rank, n_mpi_procs; 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &my_mpi_rank); 

MPI_Comm_size (MPI_COMM_WORLD, &n_mpi_procs); 

 
SUCCESS_OR_DIE (gaspi_proc_init, GASPI_BLOCK); 

 

// initialize data 

// distribute data, do MPI communication  

// call GPI library function for iteratively  

// solving a linear system 

Gaspi_Jacobi( n, n_local_rows, local_a,      
  , local_b, &x, x_new, n_max_iter, tol 

         ); 

 

SUCCESS_OR_DIE (gaspi_proc_term, GASPI_BLOCK); 

MPI_Finalize(); 
 

 

• In mixed-mode, an MPI 
based code may call GASPI 
code that is embedded into 
a library 
    
• The GASPI environment 
must be initialized and 
cleaned up within the 
calling program 



The GASPI programming model 



THINK PERFORMANCE 

Asynchronous execution 
with maximal overlap of communication and computation 



Example: Stencil applications 
• Important class of 

algorithms 
– FD methods 
– Image processing 
– PDEs 

• Iterative method 
• Non-local updates 

-> data dependencies 
 



Stencil application proxy 
• 2 buffers per element 

– Buffer 0 
– Buffer 1 

• 2 vectors per buffer 
– Upper vector 
– Lower vector 

• Data dependencies 
– Left element 
– Right element 

 

Update step: 
  - Update upper part 
  - Update lower part  

Buffer 1 

Buffer 0 Upper Vector 

Lower Vector 

Upper Vector 

Lower Vector 

Update 
cycle 



• Nthread omp threads 
• static domain decomposition / 

assignment 
• Two buffers per thread 
• Two vectors per buffer 
• Vector length: nvector 

 

Buffer 0 

Buffer 1 

tid0 
tid1 

tid2 
tid3 

Upper Vector 

Lower Vector 

Upper Vector 

Lower Vector 

Stencil application proxy 



Iteration 1 

Upper half: move 
to the right 

Lower half: move 
to the left 

barrier 

Periodic BC  

Periodic BC 



Iteration 2 

barrier 

Upper half: move 
to the right 

Lower half: move 
to the left 

Periodic BC  

Periodic BC 



Iteration 3 

barrier 

Upper half: move 
to the right 

Lower half: move 
to the left 

Periodic BC  

Periodic BC 



Iteration 4 

barrier 

Upper half: move 
to the right 

Lower half: move 
to the left 

Periodic BC  

Periodic BC 



• Nelem many iterations: 
– Initial configuration recovered 
-> Easy to check 



Temporal evolution 

Time 

Join / barrier Fork / barrier 

tid 0 

tid 1 

tid 2 

tid 3 

single iteration 



MORE THAN ONE PROCESS … 



Elementary update 
• Each process hosts 

some part of the 
information 

• Part of the information 
is no longer directly 
accessible 



Boundary / Halo domains 





BULK SYNCHRONOUS  
Separate communication / computation phases 



Communication phase 

barrier barrier 



Computation phase 

barrier barrier 



Communication phase  

barrier barrier 



Computation phase 

barrier barrier 



The GASPI Ring Exchange  
• GASPI – left_right_double_buffer_funneled.c 
 if (tid == 0) { 
 // issue write 
 write_notify_and_cycle 
  ( .. , LEFT(iProc, nProc),., right_data_available[buffer_id], 1 + i); 
 // issue write 
 write_notify_and_cycle 
  ( .., RIGHT(iProc, nProc),., left_data_available[buffer_id], 1 + i); 
  } 
#pragma omp barrier 
data_compute ( NTHREADS, array, 1 - buffer_id, buffer_id, slice_id); 
#pragma omp barrier 
buffer_id = 1 - buffer_id; 



EXCURSION: EFFICIENT PARALLEL  
       EXECUTION 

Basic ingredients 



Efficient parallel execution 
• Q: What is the measure for „efficient  

                   parallel execution“ ? 
• A: Scalability 
 



Efficient parallel execution 



Scalability S 
 

• Optimal: linear scalability, i.e. 
  

𝑇(𝑁𝑝𝑝𝑝𝑝) =T(1)/𝑁𝑝𝑝𝑝𝑝 
  

->  doubling the resources implies doubling  
     the generated benefit  



Implications for parallelization 
 

• 𝑇 𝑁𝑝𝑝𝑝𝑝 : =T(1)/𝑁𝑝𝑝𝑝𝑝  
 
  

 
T(1) 

T(4) = T(1) / 4 

Time 



Implications for parallelization 
 

• 𝑇 𝑁𝑝𝑝𝑝𝑝 : =T(1)/𝑁𝑝𝑝𝑝𝑝  
• T(1) is pure computation time, i.e. 

– communication latencies need to be completely 
hidden by the parallel implementation 

– Optimal load balancing is required 
• No synchronization points  

(Potential aggregation of imbalances, imbalances are 
per se unavoidable, e.g. OS jitter etc. ) 

• Contiguous stream of computational tasks  

 
  

 



END OF EXCURSION 



Temporal evolution: one iteration 

comm. comp. 
tid 0 

tid 1 

tid 2 

tid 3 

Time 



Temporal evolution: one iteration 

comm. comp. 
tid 0 

tid 1 

tid 2 

tid 3 

Time 

imbalances 

bad: explicitly visible communication  
        latency  



Temporal evolution: all iterations 

tid 0 

tid 1 

tid 2 

tid 3 

Time 

bad: barrier aggregates imbalances 



COMMUNICATION / COMPUTATION 
OVERLAP 

Hide communication behind computation 



Strategy 
• Hide communication latencies behind 

computation 
• Split data into inner / boundary part 

– Inner data  no dependence on remote 
information 

– Boundary data  has dependence on remote 
information 
 



Strategy 
• Algorithmic phases: 

– Init boundary data transfer  
– Update inner data along data transfer 
– Update boundary data 
 

 



Single iteration 

barrier barrier 



Left boundary element: 
1. Initiate boundary data transfer to 

remote halo 
 

barrier barrier 

 Single iteration: details 



Left boundary element: 
1. Initiate boundary data transfer to 

remote halo 
 

2. Wait for boundary data transfer 
to local halo completion 
 

barrier barrier 

 Single iteration: details 



Left boundary element: 
1. Initiate boundary data transfer to 

remote halo 
 

2. Wait for boundary data transfer 
to local halo completion 
 

3. Update  vector 
 barrier barrier 

 Single iteration: details 



Left boundary element: 
1. Initiate boundary data transfer to 

remote halo 
 

2. Wait for boundary data transfer 
to local halo completion 
 

3. Update vector 
 

-> Right boundary element  
     handled analogously 
 
 

barrier barrier 

 Single iteration: details 



Left boundary element: 
1. Initiate boundary data transfer to 

remote halo 
 

2. Wait for boundary data transfer 
to local halo completion 
 

3. Update vector 
 

-> Right boundary element  
     handled analogously 
 
 

barrier barrier 

 
In the meanwhile inner elements are 
done in parallel! 
 

 Single iteration: details 



Single iteration 

barrier barrier 



Hands-on 
• Implement the overlap of communication and 

computation 
– use left_right_double_buffer_multiple.c as 

template 
 
 



The GASPI Ring Exchange  
• GASPI – left_right_double_buffer_multiple.c 
if (tid == 0) { 
 write_notify_and_cycle 
  ( .., LEFT(iProc, nProc),. , right_data_available[buffer_id], 1 + i); 
  wait_or_die (segment_id, left_data_available[buffer_id], 1 + i); 
  data_compute ( NTHREADS, array, 1 - buffer_id, buffer_id, slice_id); 
  }  
else if (tid < NTHREADS - 1) { 
  data_compute ( NTHREADS, array, 1 - buffer_id, buffer_id, slice_id); 
 }  
else { 
 write_notify_and_cycle 
  ( .., RIGHT(iProc, nProc),. , left_data_available[buffer_id], 1 + i); 
  wait_or_die (segment_id, right_data_available[buffer_id], 1 + i); 
  data_compute ( NTHREADS, array, 1 - buffer_id, buffer_id, slice_id); 
 } 
#pragma omp barrier 
buffer_id = 1 - buffer_id; 



Temporal evolution 

tid 0 

tid 1 

tid 2 

tid 3 

Time 



Temporal evolution 

tid 0 

tid 1 

tid 2 

tid 3 

Time 



DATA DEPENDENCY DRIVEN 
Avoid synchronization point 



• What has been achieved? 
– Overlap of communication by computation 
– Communication latency is (partly) hidden 

• What has not been achieved? 
– Fully Asynchronous execution 
– Still processwide synchronization after each 

iteration 
-> process wide aggregation of thread imbalances 

 



• Why barrier? 
– Need to know that buffers are ready for next 

iteration 
 

 

• Barrier provides too much information !!! 
– Only need to know that local neighbours (my 

dependency ) are up to date 
 



Reduce synchronicity 
• Introduce stage counter for every 

buffer to account for local states 
 

• check neighbourig stage counters 
before update 
 

• In case of match: do update 
 

• Increment stage counter after 
update 
 

-> Only local dependencies remain 
 
 

Update possible Update not possible 

Stage counters Stage counters 



• Avoid static assignment thread / subdomain 
–  Instead: „Task“ for each subdomain 

• Compute task for inner subdomain 
• Compute - Initiate data transfer task for boundary 

subdomains 

– Pre-Condition check before execution 
• Left / right neighbor element do not have a higher 

iteration counter than me 

– Post-Condition set after execution 
• Increment iteration counter 



The GASPI Ring Exchange  
• GASPI – Dataflow - left_right_dataflow_halo.c 
#pragma omp parallel default (none) firstprivate (buffer_id, queue_id)  \ 
  shared (array, data_available, ssl, stderr) 
  { 
    slice* sl; 
    while (sl = get_slice_and_lock (ssl, NTHREADS, num)) 
    { 
      handle_slice(sl, array, data_available, segment_id, queue_id,  
        NWAY, NTHREADS, num); 
      omp_unset_lock (&sl->lock); 
    } 
  } typedef struct slice_t 

{ 
  omp_lock_t lock; 
  volatile int stage; 
  int index; 
  enum halo_types halo_type; 
  struct slice_t *left; 
  struct slice_t *next; 
} slice; 



Hands-on 
• Implement the data dependency driven 

algorithm 
– use slice.c as template 
– use left_right_dataflow.c as template 

 
 



The GASPI Ring Exchange  
• GASPI – Dataflow - slice.c 

 
void handle_slice ( …) 
 if (sl->halo_type == LEFT){ 
    if (sl->stage > sl->next->stage) {return;} 
    if (! test_or_die (segment_id, left_data_available[old_buffer_id], 1)) 
    { return; } 
  } else if (sl->halo_type == RIGHT) { 
    if (sl->stage > sl->left->stage) { return; } 
    if (! test_or_die (segment_id, right_data_available[old_buffer_id], 1)) 
    { return; } 
  } else if (sl->halo_type == NONE) { 
    if (sl->stage > sl->left->stage || sl->stage > sl->next->stage) {return;} 
  }  
  data_compute (NTHREADS, array, new_buffer_id, old_buffer_id, sl->index); 
  if (sl->halo_type == LEFT) { 
     write_notify_and_cycle(..); 
  } else if (sl->halo_type == RIGHT) 
     write_notify_and_cycle(..); 
  } 
 ++sl->stage; 
} 
 
   



Temporal evolution 

tid 0 

tid 1 

tid 2 

tid 3 

Time 



162 

Bottom up: Complement local task dependencies  
with remote data dependencies. 

Top Down: Reformulate towards asynchronous dataflow model.  
Overlap communication and computation. 

Targets 
• Node local execution on (heterogeneous) 

manycore architectures.  
• Scalability issues in Fork-Join models 
• Vertically fragmented memory, separation 

of access and execution, handling of data 
marshalling, tiling, etc. 

• Inherent node local load imbalance  
  

Task (Graph) Models 

Targets: 
• Latency issues, overlap of 

communication and computation. 
• Asynchronous fine-grain dataflow 

model 
• Fault tolerance, system noise, jitter.  

GASPI 

Task (Graph) Models 



GASPI at a Glance 
Features: 

• Global partitioned address space 

• Asynchronous, one-sided 
communication 

• Threadsave, every thread can 
communicate 

• Supports fault tolerance 

• Open Source 

• Standardized API (GASPI) 

Infiniband, Cray, Ethernet, GPUs, Intel Xeon Phi, 
Open Source (GPL) , standardized API 

tested on up  
to 65k cores! 



Questions? 

Thank you for your attention 

www.gaspi.de www.gpi-site.com 
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