
GASPI Tutorial

Christian Simmendinger

Mirko Rahn
Daniel Grünewald

Sponsored by the European Commission through

Schedule
• 9:30h – 11:00h Introduction to GASPI
• 11:00h-11:30h break
• 11:30h-13:00h Segments
• 13:00h-14:00h lunch
• 14:00h-15:30h Single sided communication
• 15:30h-16:00h Break
• 16:00h-17:30h GASPI programming model
• 17:30h end

Round of Introductions
• Who are you?
• What are you doing?
• How did you get in contact with GASPI?
• What is your interest in / expectation to

GASPI?

Goals
• Get an overview over GASPI
• Learn how to

– Compile a GASPI program
– Execute a GASPI program

• Get used to the GASPI programming model
– one-sided communication
– weak synchronization
– asynchronous patterns / dataflow implementations

Outline
• Introduction to GASPI
• GASPI API

– Execution model
– Memory segments
– One-sided communication
– Collectives
– Passive communication

Outline
• GASPI programming model

– Dataflow model
– Fault tolerance

www.gaspi.de www.gpi-site.com

Installation
• Tutorial code and documentation:

git clone https://github.com/GASPI-Forum/GASPI-
Standard.git

• GPI-2 - GASPI Implementation:
git clone https://github.com/cc-hpc-itwm/GPI-2.git
– install.sh –p $HOME/GPI-2.foo

native GASPI version, start application with gaspi_run
– install.sh –p $HOME/GPI-2.bar –with-mpi=MPI_ROOT

mpi interoperable version, start application with mpirun

https://github.com/GASPI-Forum/GASPI-Standard.git
https://github.com/GASPI-Forum/GASPI-Standard.git
https://github.com/cc-hpc-itwm/GPI-2.git

Introduction to GASPI

GASPI at a Glance

Nuts and Bolts for Communication Engines

GASPI at a Glance
Features:

• Global partitioned address space

• Asynchronous, one-sided
communication

• Threadsave, every thread can
communicate

• Supports fault tolerance

• Open Source

• Standardized API (GASPI)

Infiniband, Cray, Ethernet, GPUs, Intel Xeon Phi,
Open Source (GPL) , standardized API

tested on up
to 65k cores!

GASPI History

• GPI is the implementation of the GASPI standard
– originally called Fraunhofer Virtual Machine (FVM)
– developed since 2005
– used in many of the industry projects at CC-HPC of

Fraunhofer ITWM

Winner of the „Joseph von Fraunhofer Preis 2013“
Finalist of the „European Innovation Radar 2016“.

 www.gpi-site.com

Founding
Members

GASPI
Standardization Forum

 GASPI in
European Exascale Projects

Visualization CFD

Machine Learning
Big Data
Iterative Solvers Seismic Imaging & Algorithms

Some GASPI Applications

Concepts: Communication

GASPI is a
communication

library
What is

communi-
cation?

Data Transfer

Synchronisation

Concepts:
One-Sided Communication

• One-sided operations between parallel processes
include remote reads and writes

• Data can be accessed without participation of the
remote site

• The initiator specifies all parameters
– Source location
– Target location
– Message size

Concepts:
Segments

• Data can be accessed
without participation of the
remote site.

• Remote sides have to know
about designated communi-
cation area(s) before hand

• Designated communication
areas in GASPI are called
segments

Node 1

Node 2

Segment 1

Segment 2

Segment 1

Segment 2

Segment 3

Segment 4

Concepts:
Segments

Application has to manage data
transfer completely:
• Specify which part of the

segment will be transferred
(offset and size)

Node 1

Node 2

Segment 1

Segment 2

Segment 1

Segment 2

Segment 3

Segment 4

offset

siz
e Data

offset

siz
e Data

Concepts:
one-sided Communication

• One-sided operations between
parallel processes include remote
reads and writes.

• Data can be accessed without
participation of the remote site.

• One-sided communication is non-
blocking: communication is
triggered but may not be finished

Node 1 Node 2

Ti
m

e
ax

is

write

Concepts:
one-sided Communication

• Node 2 has not participated,
it does not know that
communication has started

Node 1 Node 2

Ti
m

e
ax

is

write

Concepts:
Synchronisation with Notifications
• Node 2 has not participated,

it does not know that
communication has started

• It has to be notified.

Node 1 Node 2

Ti
m

e
ax

is

write

notify

Concepts:
Synchronisation with Notifications
• Node 2 has not participated,

it does not know that
communication has started

• It has to be notified for data
movement completion.

• Node 1 does not know if the
write has finished.

• If it needs to know, it also
has to be notified

Node 1 Node 2

Ti
m

e
ax

is

write

notify

notify

Concepts: overlap of
Communication and Computation

• Due to the non-blocking
nature of the call Node 1 has
gained some computation
time which it can use

• Communication and
computation happen in
parallel

• Communication latency is
hidden

Node 1 Node 2

Ti
m

e
ax

is

write

notify

notify
Co

m
pu

ta
tio

n
tim

e

Concepts: Warning!

• Data synchronisation by wait
+ barrier does not work!

• Wait does wait on local
queue on Node 1, does not
know about write in Node 2,
barrier() has no relation with
communication

• Data synchronization only by
notifications

Node 1 Node 2

Ti
m

e
ax

is

write

wait

barrier barrier

Concepts:
Communication Queues

• Communication requests are
posted to queues

• Queues are a local concept!
• Used to separate concerns

between different parts of
the applications

• Queues are used in order to
establish the
synchronization context.

Node 1 Node 2 Node 3

Communication
agnostic to queues

Queue 1: e.g. used by main app.

Queue 2: e.g. used by library

Incoming data agnostic of queue

The GASPI API
• 52 communication functions
• 24 getter/setter functions
• 108 pages
 … but in reality:

– Init/Term
– Segments
– Read/Write
– Passive Communication
– Global Atomic Operations
– Groups and collectives

www.gaspi.de

Execution Model

GASPI Execution Model
• SPMD / MPMD execution model
• All procedures have prefix gaspi_

• All procedures have a return value
• Timeout mechanism for potentially blocking

procedures

GASPI Return Values
• Procedure return values:

– GASPI_SUCCESS
• designated operation successfully completed

– GASPI_TIMEOUT
• designated operation could not be finished in the given time
• not necessarily an error
• the procedure has to be invoked subsequently in order to fully

complete the designated operation

– GASPI_QUEUE_FULL
• Request could not be posted to queue. End of queue has been

reached, change queue or wait
– GASPI_ERROR

• designated operation failed -> check error vector

• Advice: Always check return value !

success_or_die.h
#ifndef SUCCESS_OR_DIE_H
#define SUCCESS_OR_DIE_H

#include <GASPI.h>
#include <stdlib.h>

#define SUCCESS_OR_DIE(f...) \
do \
{ \
 const gaspi_return_t r = f; \
 \
 if (r != GASPI_SUCCESS) \
 { \
 printf ("Error: '%s' [%s:%i]: %i\n", #f, __FILE__, __LINE__, r);\
 exit (EXIT_FAILURE); \
 } \
} while (0)

#endif

Timeout Mechanism
• Mechanism for potentially blocking procedures

– procedure is guaranteed to return
• Timeout: gaspi_timeout_t

– GASPI_TEST (0)
• procedure completes local operations
• Procedure does not wait for data from other processes

– GASPI_BLOCK (-1)
• wait indefinitely (blocking)

– Value > 0
• Maximum time in msec the procedure is going to wait for data

from other ranks to make progress
• != hard execution time

GASPI Process Management
• Initialize / Finalize

– gaspi_proc_init
– gaspi_proc_term

• Process identification
– gaspi_proc_rank
– gaspi_proc_num

• Process configuration
– gaspi_config_get
– gaspi_config_set

GASPI Initialization
• gaspi_proc_init

– initialization of resources
• set up of communication infrastructure if requested
• set up of default group GASPI_GROUP_ALL
• rank assignment

– position in machinefile  rank ID

– no default segment creation

GASPI Finalization
• gaspi_proc_term

– clean up
• wait for outstanding communication to be finished
• release resources

– no collective operation !

GASPI Process Identification
• gaspi_proc_rank

• gaspi_proc_num

GASPI Startup
• gaspi_run

Usage:
gaspi_run –m <machinefile>[OPTIONS] <path2bin>

Available options:
 -b <binary file> Use a different binary for
 master
 -N Enable NUMA for procs on same
 node
 -n <procs> start as many <procs> from
 machinefile
 -d Run with gdb on master node

GASPI Startup
• aprun

Usage:
aprun –n <procs> -d <threadsperproc> <path2bin>

Available options:
 -n Number of processes to start
 -d Number of threads per process

Build a GASPI program
• module load gpi2/1.3.0
• module swap PrgEnv-cray PrgEnv-gnu
• link the library

– GPI2 for production
– GPI2-dbg for development

• GPI2-dbg has several consistency checks -> more useful error messages

Hello world – Hands on
• Write a GASPI „Hello World“ program which outputs

 Hello world from rank xxx of yyy

– Use hands_on/helloworld.c as starting point
– Use SUCCESS_OR_DIE macro to check for return values
– Use the debug library (libGPI2-dbg.a)

• Execute the Hello World program

GASPI „hello world“
#include "success_or_die.h“
#include <GASPI.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 SUCCESS_OR_DIE(gaspi_proc_init(GASPI_BLOCK));

 gaspi_rank_t rank;
 gaspi_rank_t num;
 SUCCESS_OR_DIE(gaspi_proc_rank(&rank));
 SUCCESS_OR_DIE(gaspi_proc_num(&num));

 printf("Hello world from rank %d of %d\n",rank, num);

 SUCCESS_OR_DIE(gaspi_proc_term(GASPI_BLOCK));
 return EXIT_SUCCESS;
}

Memory Segments

Segments

Segments
• Software abstraction of hardware memory hierarchy

– NUMA
– GPU
– Xeon Phi

• One partition of the PGAS
• Contiguous block of virtual memory

– no pre-defined memory model
– memory management up to the application

• Locally / remotely accessible
– local access by ordinary memory operations
– remote access by GASPI communication routines

GASPI Segments
• GASPI provides only a few relatively large segments

– segment allocation is expensive
– the total number of supported segments is limited by

hardware constraints

• GASPI segments have an allocation policy
– GASPI_MEM_UNINITIALIZED

• memory is not initialized

– GASPI_MEM_INITIALIZED
• memory is initialized (zeroed)

Segment Functions
• Segment creation

– gaspi_segment_alloc
– gaspi_segment_register
– gaspi_segment_create

• Segment deletion
– gaspi_segment_delete

• Segment utilities
– gaspi_segment_num
– gaspi_segment_ptr

• gaspi_segment_alloc

– allocate and pin for RDMA
– Locally accessible

GASPI Segment Allocation

• gaspi_segment register

– segment accessible by rank

GASPI Segment Creation
• gaspi_segment_create

– Collective short cut to
• gaspi_segment_alloc
• gaspi_segment_register

– After successful completion, the segment is locally
and remotely accessible by all ranks in the group

GASPI Segment with given Buffer
• gaspi_segment_bind

• Binds a buffer to a particular segment
• Same capabilities as allocated/created segment
• Locally accessible (requires gaspi_segment_register)

GASPI Segment with given Buffer
• gaspi_segment_use

• Equivalent to

GASPI Segment Deletion
• gaspi_segment_delete

– Free segment memory

GASPI Segment Utils
• gaspi_segment_num

• gaspi_segment_ptr

• gaspi_segment_list

GASPI Segment Utils
• gaspi_segment_max

• Maximum number of segments
• Defines range of allowed segment IDs

[0,segment_max - 1)

Using Segments – Hands on
• Write a GASPI program which stores a NxM matrix in a

distributed way: 1 row per process

– Create a segment
– Initialize the segment

– output the result

0 1 … M-1

M M+1 … 2M-1

(N-1)M (N-1)M+1 … NM-1

Row 0 Row 1 Row N-1

Using Segments (I)
// includes

int main(int argc, char *argv[])
{
 static const int VLEN = 1 << 2;
 SUCCESS_OR_DIE(gaspi_proc_init(GASPI_BLOCK));
 gaspi_rank_t iProc, nProc;
 SUCCESS_OR_DIE(gaspi_proc_rank(&iProc));
 SUCCESS_OR_DIE(gaspi_proc_num(&nProc));

 gaspi_segment_id_t const segment_id = 0;
 gaspi_size_t const segment_size = VLEN * sizeof (double);

 SUCCESS_OR_DIE (gaspi_segment_create (segment_id, segment_size
 , GASPI_GROUP_ALL, GASPI_BLOCK
 , GASPI_MEM_UNINITIALIZED));

Using Segments (II)

 gaspi_pointer_t array;
 SUCCESS_OR_DIE(gaspi_segment_ptr (segment_id, &array));

 for (int j = 0; j < VLEN; ++j)
 {
 ((double *)array)[j]= (double)(iProc * VLEN + j);
 printf("rank %d elem %d: %f \n„
 , iProc,j,((double *)array)[j]);
 }

 SUCCESS_OR_DIE(gaspi_proc_term(GASPI_BLOCK));
 return EXIT_SUCCESS;
}

One-sided Communication

GASPI One-sided Communication
• gaspi_write

– Post a put request into a given queue for transfering data
from a local segment into a remote segment

• gaspi_read

GASPI One-sided Communication

– Post a get request into a given queue for transfering data
from a remote segment into a local segment

• gaspi_wait

GASPI One-sided Communication

– Wait on local completion of all requests in a given queue
– After successfull completion, all involved local buffers are

valid

Queues (I)
• Different queues available to handle the

communication requests
• Requests to be submitted to one of the supported

queues
• Advantages

– More scalability
– Channels for different types of requests
– Similar types of requests are queued and synchronized

together but independently from other ones
– Separation of concerns
– Asynchronous execution, thin abstraction of HW queues.

Queues (II)
• Fairness of transfers posted to different queues is

guaranteed
– No queue should see ist communication requests delayed

indefinitely
• A queue is identified by its ID
• Synchronization of calls by the queue
• Queue order does not imply message order on the

network / remote memory
• A subsequent notify call is guaranteed to be non-

overtaking for all previous posts to the same queue
and rank

Queues (III)
• Queues have a finite capacity
• Queues are not automatically flushed

– Maximize time between posting the last request
and flushing the queue (qwait)

• Return value GASPI_QUEUE_FULL indicates full
queue.

GASPI Queue Utils
• gaspi_queue_size

• gaspi_queue_size_max

GASPI Queue Utils
• gaspi_queue_num

• gaspi_queue_max

GASPI Queue Utils
• gaspi_queue_create

• gaspi_queue_delete

write_and_wait
• serial wait on queue
• sanity checks

• cycle through queues
• sanity checks

write_notify_and_cycle

wait_for_flush_queues
• flush all queues

Data Synchronization By Notification
• One sided-communication:

– Entire communication managed by the local
process only

– Remote process is not involved
– Advantage: no inherent synchronization between

the local and the remote process in every
communication request

• Still: At some point the remote process needs
knowledge about data availability
– Managed by notification mechanism

GASPI Notification Mechanism
• Several notifications for a given segment

– Identified by notification ID
– Logical association of memory location and

notification

• gaspi_notify

GASPI Notification Mechanism

– Posts a notification with a given value to a given
queue

– Remote visibility guarantees remote data visibility
of all previously posted writes in the same queue,
the same segment and the same process rank

• gaspi_notify_waitsome

GASPI Notification Mechanism

– Monitors a contiguous subset of notification id‘s
for a given segment

– Returns successfull if at least one of the
monitored id‘s is remotely updated to a value
unequal zero

• gaspi_notify_reset

GASPI Notification Mechanism

– Atomically resets a given notification id and yields
the old value

wait_or_die
• Wait for a given

notification and reset
• Sanity checks

test_or_die
• Test for a given notification

and reset
• Sanity checks

Extended One-sided Calls
• gaspi_write_notify

– write + subsequent gaspi_notify, unordered with respect to „other“
writes.

• gaspi_write_list
– several subsequent gaspi_writes to the same rank

• gaspi_write_list_notify
– gaspi_write_list + subsequent gaspi_notify, non-ordered with respect to

„other“ writes.
• gaspi_read_list

– Several subsequent read from the same rank.
• gaspi_read_notify

– read + subsequent gaspi_notify, unordered with respect to „other“
writes.

Hardware Optimized

GASPI extended one-sided
• gaspi_write_notify

– gaspi_write with subsequent gaspi_notify
– Unordered relative to other communication (!)

GASPI extended one-sided
• gaspi_write_list

– Several subsequent gaspi_write

GASPI extended one-sided
• gaspi_write_list_notify

– several subsequent gaspi_write and a notification
– Unordered relative to other communication (!)

GASPI extended one-sided
• gaspi_read_list

– several subsequent gaspi_read

• gaspi_read_notify

– „gaspi_read with subsequent gaspi_notify“
– Unordered relative to other communication (!)

GASPI extended one-sided

Communication – Hands on
• Take your GASPI program which stores a NxM matrix in a

distributed way and extend it by communication for rows

– Create a segment (sufficient size for a source and target row)
– Initialize the segment

0 1 … M-1

M M+1 … 2M-1

(N-1)M (N-1)M+1 … NM-1

Row 0 Row 1 Row N-1

Communication – Hands on
• Take your GASPI program which stores a NxM matrix in a

distributed way and extend it by communication
– Communicate your row to your right neighbour (periodic BC)

– Check that the data is available
– Output the result

Row 0 Row N-1 Row 1 Row 0 Row N-1 Row N-2

write_notify notify_waitsome

onesided.c (I)
// includes

int main(int argc, char *argv[])
{
 static const int VLEN = 1 << 2;
 SUCCESS_OR_DIE(gaspi_proc_init(GASPI_BLOCK));
 gaspi_rank_t iProc, nProc;
 SUCCESS_OR_DIE(gaspi_proc_rank(&iProc));
 SUCCESS_OR_DIE(gaspi_proc_num(&nProc));
 gaspi_segment_id_t const segment_id = 0;
 gaspi_size_t const segment_size = 2 * VLEN * sizeof (double);

 SUCCESS_OR_DIE (gaspi_segment_create (segment_id, segment_size
 , GASPI_GROUP_ALL, GASPI_BLOCK
 , GASPI_MEM_UNINITIALIZED));
 gaspi_pointer_t array;
 SUCCESS_OR_DIE (gaspi_segment_ptr (segment_id, &array));
 double * src_array = (double *)(array);
 double * rcv_array = src_array + VLEN;

 for (int j = 0; j < VLEN; ++j) {
 src_array[j]= (double)(iProc * VLEN + j); }

 gaspi_notification_id_t data_available = 0;
 gaspi_offset_t loc_off = 0;
 gaspi_offset_t rem_off = VLEN * sizeof (double);
 write_notify_and_cycle (segment_id
 , loc_off
 , RIGHT (iProc, nProc)
 , segment_id
 , rem_off
 , VLEN * sizeof (double)
 , data_available
 , 1 + iProc
);
 wait_or_die (segment_id, data_available, 1 + LEFT (iProc, nProc));
 for (int j = 0; j < VLEN; ++j)
 { printf("rank %d rcv elem %d: %f \n", iProc,j,rcv_array[j]); }
 wait_for_flush_queues();
 SUCCESS_OR_DIE(gaspi_proc_term(GASPI_BLOCK));
 return EXIT_SUCCESS;}

 /* write, cycle if required and re-submit */
 while ((ret = (gaspi_write_notify(segment_id_local, offset_local, rank,
 segment_id_remote, offset_remote, size,
 notification_id, notification_value,
 my_queue, timeout)
)) == GASPI_QUEUE_FULL) {
 my_queue = (my_queue + 1) % queue_num;
 SUCCESS_OR_DIE (gaspi_wait (my_queue,
 GASPI_BLOCK));
 }
 ASSERT (ret == GASPI_SUCCESS);

GPI 2.0 - Bandwidth

Collectives

Collective Operations (I)
• Collectivity with respect to a definable subset of

ranks (groups)
– Each GASPI process can participate in more than one group
– Defining a group is a three step procedure

• gaspi_group_create
• gaspi_group_add
• gaspi_group_commit

– GASPI_GROUP_ALL is a predefined group containing all
processes

Collective Operations (II)
• All gaspi processes forming a given group have to

invoke the operation
• In case of a timeout (GASPI_TIMEOUT), the

operation is continued in the next call of the
procedure

• A collective operation may involve several procedure
calls until completion

• Completion is indicated by return value
GASPI_SUCCESS

Collective Operations (III)
• Collective operations are exclusive per group

– Only one collective operation of a given type on a
given group at a given time

– Otherwise: undefined behaviour
• Example

– Two allreduce operations for one group can not
run at the same time

– An allreduce operation and a barrier are allowed
to run at the same time

Collective Functions
• Built in:

– gaspi_barrier
– gaspi_allreduce

• GASPI_OP_MIN, GASPI_OP_MAX, GASPI_OP_SUM
• GASPI_TYPE_INT, GASPI_TYPE_UINT,

GASPI_TYPE_LONG, GASPI_TYPE_ULONG,
GASPI_TYPE_FLOAT, GASPI_TYPE_DOUBLE

• User defined
– gaspi_allreduce user

• gaspi_barrier

GASPI Collective Function

• gaspi_allreduce

Passive communication

Passive Communication Functions (I)
• 2 sided semantics send/recv

– gaspi_passive_send

• time based blocking

Passive Communication Functions (II)
– Gaspi_passive receive

• Time based blocking
• Sends calling thread to sleep
• Wakes up calling thread in case of incoming message or

given timeout has been reached

Passive Communication Functions (III)

• Higher latency than one-sided comm.
– Use cases:

• Parameter exchange
• management tasks
• „Passive“ Active Messages (see advanced tutorial code)

– GASPI Swiss Army Knife.

Passive Communication Functions (III)
• Example: Negotiate offsets for alltoallV

communication
• Set local send offsets, local receive offsets and remote

receive offsets.
• Use passive communication for serializing incoming traffic

in order to determine linear alltoallV workarrays.
• Use passive communication to trigger remote printing of

received data.

Passive Communication Functions (IV)

void *handle_passive(void *arg)
{
 gaspi_pointer_t _vptr;
 SUCCESS_OR_DIE(gaspi_segment_ptr(passive_segment, &_vptr));
 const gaspi_offset_t passive_offset = sizeof(packet);
 while(1)
 {
 gaspi_rank_t sender;
 SUCCESS_OR_DIE(gaspi_passive_receive(passive_segment
 , passive_offset
 , &sender
 , sizeof(packet)
 , GASPI_BLOCK
));
 packet *t = (packet *) ((char*)_vptr + sizeof(packet));
 return_offset(t->rank, t->len, t->offset)
 }
return NULL;

Fault Tolerance

Features
• Implementation of fault tolerance is up to the

application
• But: well defined and requestable state guaranteed

at any time by
– Timeout mechanism

• Potentially blocking routines equipped with timeout
– Error vector

• contains health state of communication partners
– Dynamic node set

• substitution of failed processes

Interoperability with MPI

Interoperability with MPI

• GASPI supports interoperability with MPI in a so-called mixed-
mode.

• The mixed-mode allows for
– either entirely porting an MPI application to GASPI
– or replacing performance-critical parts of an MPI based

application with GASPI code (useful when dealing with
large MPI code bases)

• Porting guides available at:
 http://www.gpi-site.com/gpi2/docs/whitepapers/

Mixing GASPI and MPI
in Parallel Programs

• GASPI must be installed with MPI
support, using the option

--with-mpi <path_to_mpi_installation>

• MPI must be initialized before
GASPI, as shown in the joined
example
• The same command or script as
the one provided by the MPI
installation should be used for
starting programs (mpirun or similar)
• gaspi_run should not be used!

#include <assert.h>
#include <GASPI.h>
#include <mpi.h>

int main (int argc, char *argv[])
{
 // initialize MPI and GASPI
 MPI_Init (&argc, &argv);
 gaspi_proc_init (GASPI_BLOCK);

 // Do work …

 // shutdown GASPI and MPI
 gaspi_proc_term (GASPI_BLOCK);
 MPI_Finalize();

 return 0;
}

GASPI Preserves the MPI Ranks
• GASPI is able to detect at

runtime the MPI
environment and to setup
its own environment
based on this

• GASPI can deliver the
same information about
ranks and number of
processes as MPI

• This helps to preserve
the application logic

…

int nProc_MPI, iProc_MPI;
gaspi_rank_t iProc, nProc;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &iProc_MPI);
MPI_Comm_size (MPI_COMM_WORLD, &nProc_MPI);

SUCCESS_OR_DIE (gaspi_proc_ini(GASPI_BLOCK));
SUCCESS_OR_DIE (gaspi_proc_rank (&iProc));
SUCCESS_OR_DIE (gaspi_proc_num (&nProc));

ASSERT(iProc == iProc_MPI);
ASSERT(nProc == nProc_MPI);

…

Using User Provided
Memory for Segments

//initialize and allocate memory

double *buffer = calloc (num_elements
 , sizeof(double)

);

gaspi_segment_id_t segment_id = 0;

//use the allocated buffer as underlying
//memory support for a segment

SUCCESS_OR_DIE

 (gaspi_segment_use

 , segment_id

 , buffer

 , n*sizeof (double)

 , GASPI_GROUP_ALL

 , GASPI_BLOCK

 , 0

);

• New feature added in
version 1.3 of GASPI: a user
may provide already allocated
memory for segments
• Memory used in MPI
communication can be used in
GASPI communication
• However, the feature
should be used with care
because the segment creation
is an expensive operation

Using GASPI Segment Allocated
Memory in MPI Communication

// allgatherV

 SUCCESS_OR_DIE (gaspi_segment_create (segment_id

 , vlen * sizeof(int), GASPI_GROUP_ALL, GASPI_BLOCK

 , GASPI_ALLOC_DEFAULT));

 gaspi_pointer_t _ptr = NULL;

 SUCCESS_OR_DIE (gaspi_segment_ptr (segment_id, &_ptr));

 int *array = (int *) _ptr;

 init_array(array, offset, size, iProc, nProc);

 MPI_Allgatherv(&array[offset[iProc]], size[iProc], MPI_INT

 , array, size, offset, MPI_INT, MPI_COMM_WORLD);

Mixing MPI Code with
GASPI Code From a Library

int n, my_mpi_rank, n_mpi_procs;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &my_mpi_rank);

MPI_Comm_size (MPI_COMM_WORLD, &n_mpi_procs);

SUCCESS_OR_DIE (gaspi_proc_init, GASPI_BLOCK);

// initialize data

// distribute data, do MPI communication

// call GPI library function for iteratively

// solving a linear system

Gaspi_Jacobi(n, n_local_rows, local_a,
 , local_b, &x, x_new, n_max_iter, tol

);

SUCCESS_OR_DIE (gaspi_proc_term, GASPI_BLOCK);

MPI_Finalize();

• In mixed-mode, an MPI
based code may call GASPI
code that is embedded into
a library

• The GASPI environment
must be initialized and
cleaned up within the
calling program

The GASPI programming model

THINK PERFORMANCE

Asynchronous execution
with maximal overlap of communication and computation

Example: Stencil applications
• Important class of

algorithms
– FD methods
– Image processing
– PDEs

• Iterative method
• Non-local updates

-> data dependencies

Stencil application proxy
• 2 buffers per element

– Buffer 0
– Buffer 1

• 2 vectors per buffer
– Upper vector
– Lower vector

• Data dependencies
– Left element
– Right element

Update step:
 - Update upper part
 - Update lower part

Buffer 1

Buffer 0 Upper Vector

Lower Vector

Upper Vector

Lower Vector

Update
cycle

• Nthread omp threads
• static domain decomposition /

assignment
• Two buffers per thread
• Two vectors per buffer
• Vector length: nvector

Buffer 0

Buffer 1

tid0
tid1

tid2
tid3

Upper Vector

Lower Vector

Upper Vector

Lower Vector

Stencil application proxy

Iteration 1

Upper half: move
to the right

Lower half: move
to the left

barrier

Periodic BC

Periodic BC

Iteration 2

barrier

Upper half: move
to the right

Lower half: move
to the left

Periodic BC

Periodic BC

Iteration 3

barrier

Upper half: move
to the right

Lower half: move
to the left

Periodic BC

Periodic BC

Iteration 4

barrier

Upper half: move
to the right

Lower half: move
to the left

Periodic BC

Periodic BC

• Nelem many iterations:
– Initial configuration recovered
-> Easy to check

Temporal evolution

Time

Join / barrier Fork / barrier

tid 0

tid 1

tid 2

tid 3

single iteration

MORE THAN ONE PROCESS …

Elementary update
• Each process hosts

some part of the
information

• Part of the information
is no longer directly
accessible

Boundary / Halo domains

BULK SYNCHRONOUS
Separate communication / computation phases

Communication phase

barrier barrier

Computation phase

barrier barrier

Communication phase

barrier barrier

Computation phase

barrier barrier

The GASPI Ring Exchange
• GASPI – left_right_double_buffer_funneled.c
 if (tid == 0) {
 // issue write
 write_notify_and_cycle
 (.. , LEFT(iProc, nProc),., right_data_available[buffer_id], 1 + i);
 // issue write
 write_notify_and_cycle
 (.., RIGHT(iProc, nProc),., left_data_available[buffer_id], 1 + i);
 }
#pragma omp barrier
data_compute (NTHREADS, array, 1 - buffer_id, buffer_id, slice_id);
#pragma omp barrier
buffer_id = 1 - buffer_id;

EXCURSION: EFFICIENT PARALLEL
 EXECUTION

Basic ingredients

Efficient parallel execution
• Q: What is the measure for „efficient

 parallel execution“ ?
• A: Scalability

Efficient parallel execution

Scalability S

• Optimal: linear scalability, i.e.

𝑇(𝑁𝑝𝑝𝑝𝑝) =T(1)/𝑁𝑝𝑝𝑝𝑝

-> doubling the resources implies doubling
 the generated benefit

Implications for parallelization

• 𝑇 𝑁𝑝𝑝𝑝𝑝 : =T(1)/𝑁𝑝𝑝𝑝𝑝

T(1)

T(4) = T(1) / 4

Time

Implications for parallelization

• 𝑇 𝑁𝑝𝑝𝑝𝑝 : =T(1)/𝑁𝑝𝑝𝑝𝑝
• T(1) is pure computation time, i.e.

– communication latencies need to be completely
hidden by the parallel implementation

– Optimal load balancing is required
• No synchronization points

(Potential aggregation of imbalances, imbalances are
per se unavoidable, e.g. OS jitter etc.)

• Contiguous stream of computational tasks

END OF EXCURSION

Temporal evolution: one iteration

comm. comp.
tid 0

tid 1

tid 2

tid 3

Time

Temporal evolution: one iteration

comm. comp.
tid 0

tid 1

tid 2

tid 3

Time

imbalances

bad: explicitly visible communication
 latency

Temporal evolution: all iterations

tid 0

tid 1

tid 2

tid 3

Time

bad: barrier aggregates imbalances

COMMUNICATION / COMPUTATION
OVERLAP

Hide communication behind computation

Strategy
• Hide communication latencies behind

computation
• Split data into inner / boundary part

– Inner data  no dependence on remote
information

– Boundary data  has dependence on remote
information

Strategy
• Algorithmic phases:

– Init boundary data transfer
– Update inner data along data transfer
– Update boundary data

Single iteration

barrier barrier

Left boundary element:
1. Initiate boundary data transfer to

remote halo

barrier barrier

 Single iteration: details

Left boundary element:
1. Initiate boundary data transfer to

remote halo

2. Wait for boundary data transfer
to local halo completion

barrier barrier

 Single iteration: details

Left boundary element:
1. Initiate boundary data transfer to

remote halo

2. Wait for boundary data transfer
to local halo completion

3. Update vector
 barrier barrier

 Single iteration: details

Left boundary element:
1. Initiate boundary data transfer to

remote halo

2. Wait for boundary data transfer
to local halo completion

3. Update vector

-> Right boundary element
 handled analogously

barrier barrier

 Single iteration: details

Left boundary element:
1. Initiate boundary data transfer to

remote halo

2. Wait for boundary data transfer
to local halo completion

3. Update vector

-> Right boundary element
 handled analogously

barrier barrier

In the meanwhile inner elements are
done in parallel!

 Single iteration: details

Single iteration

barrier barrier

Hands-on
• Implement the overlap of communication and

computation
– use left_right_double_buffer_multiple.c as

template

The GASPI Ring Exchange
• GASPI – left_right_double_buffer_multiple.c
if (tid == 0) {
 write_notify_and_cycle
 (.., LEFT(iProc, nProc),. , right_data_available[buffer_id], 1 + i);
 wait_or_die (segment_id, left_data_available[buffer_id], 1 + i);
 data_compute (NTHREADS, array, 1 - buffer_id, buffer_id, slice_id);
 }
else if (tid < NTHREADS - 1) {
 data_compute (NTHREADS, array, 1 - buffer_id, buffer_id, slice_id);
 }
else {
 write_notify_and_cycle
 (.., RIGHT(iProc, nProc),. , left_data_available[buffer_id], 1 + i);
 wait_or_die (segment_id, right_data_available[buffer_id], 1 + i);
 data_compute (NTHREADS, array, 1 - buffer_id, buffer_id, slice_id);
 }
#pragma omp barrier
buffer_id = 1 - buffer_id;

Temporal evolution

tid 0

tid 1

tid 2

tid 3

Time

Temporal evolution

tid 0

tid 1

tid 2

tid 3

Time

DATA DEPENDENCY DRIVEN
Avoid synchronization point

• What has been achieved?
– Overlap of communication by computation
– Communication latency is (partly) hidden

• What has not been achieved?
– Fully Asynchronous execution
– Still processwide synchronization after each

iteration
-> process wide aggregation of thread imbalances

• Why barrier?
– Need to know that buffers are ready for next

iteration

• Barrier provides too much information !!!
– Only need to know that local neighbours (my

dependency) are up to date

Reduce synchronicity
• Introduce stage counter for every

buffer to account for local states

• check neighbourig stage counters
before update

• In case of match: do update

• Increment stage counter after
update

-> Only local dependencies remain

Update possible Update not possible

Stage counters Stage counters

• Avoid static assignment thread / subdomain
– Instead: „Task“ for each subdomain

• Compute task for inner subdomain
• Compute - Initiate data transfer task for boundary

subdomains

– Pre-Condition check before execution
• Left / right neighbor element do not have a higher

iteration counter than me

– Post-Condition set after execution
• Increment iteration counter

The GASPI Ring Exchange
• GASPI – Dataflow - left_right_dataflow_halo.c
#pragma omp parallel default (none) firstprivate (buffer_id, queue_id) \
 shared (array, data_available, ssl, stderr)
 {
 slice* sl;
 while (sl = get_slice_and_lock (ssl, NTHREADS, num))
 {
 handle_slice(sl, array, data_available, segment_id, queue_id,
 NWAY, NTHREADS, num);
 omp_unset_lock (&sl->lock);
 }
 } typedef struct slice_t

{
 omp_lock_t lock;
 volatile int stage;
 int index;
 enum halo_types halo_type;
 struct slice_t *left;
 struct slice_t *next;
} slice;

Hands-on
• Implement the data dependency driven

algorithm
– use slice.c as template
– use left_right_dataflow.c as template

The GASPI Ring Exchange
• GASPI – Dataflow - slice.c

void handle_slice (…)
 if (sl->halo_type == LEFT){
 if (sl->stage > sl->next->stage) {return;}
 if (! test_or_die (segment_id, left_data_available[old_buffer_id], 1))
 { return; }
 } else if (sl->halo_type == RIGHT) {
 if (sl->stage > sl->left->stage) { return; }
 if (! test_or_die (segment_id, right_data_available[old_buffer_id], 1))
 { return; }
 } else if (sl->halo_type == NONE) {
 if (sl->stage > sl->left->stage || sl->stage > sl->next->stage) {return;}
 }
 data_compute (NTHREADS, array, new_buffer_id, old_buffer_id, sl->index);
 if (sl->halo_type == LEFT) {
 write_notify_and_cycle(..);
 } else if (sl->halo_type == RIGHT)
 write_notify_and_cycle(..);
 }
 ++sl->stage;
}

Temporal evolution

tid 0

tid 1

tid 2

tid 3

Time

162

Bottom up: Complement local task dependencies
with remote data dependencies.

Top Down: Reformulate towards asynchronous dataflow model.
Overlap communication and computation.

Targets
• Node local execution on (heterogeneous)

manycore architectures.
• Scalability issues in Fork-Join models
• Vertically fragmented memory, separation

of access and execution, handling of data
marshalling, tiling, etc.

• Inherent node local load imbalance

Task (Graph) Models

Targets:
• Latency issues, overlap of

communication and computation.
• Asynchronous fine-grain dataflow

model
• Fault tolerance, system noise, jitter.

GASPI

Task (Graph) Models

GASPI at a Glance
Features:

• Global partitioned address space

• Asynchronous, one-sided
communication

• Threadsave, every thread can
communicate

• Supports fault tolerance

• Open Source

• Standardized API (GASPI)

Infiniband, Cray, Ethernet, GPUs, Intel Xeon Phi,
Open Source (GPL) , standardized API

tested on up
to 65k cores!

Questions?

Thank you for your attention

www.gaspi.de www.gpi-site.com

	GASPI Tutorial
	Schedule
	Round of Introductions
	Goals
	Outline
	Outline
	Installation
	Introduction to GASPI
	Slide Number 9
	GASPI at a Glance
	GASPI History
	Slide Number 12
		GASPI in �European Exascale Projects
	Slide Number 14
	Concepts: Communication
	Concepts: �One-Sided Communication
	Concepts: �Segments
	Concepts: �Segments
	Concepts: �one-sided Communication
	Concepts: �one-sided Communication
	Concepts: �Synchronisation with Notifications
	Concepts: �Synchronisation with Notifications
	Concepts: overlap of Communication and Computation
	Concepts: Warning!�
	Concepts:�Communication Queues
	The GASPI API
	Execution Model
	GASPI Execution Model
	GASPI Return Values
	success_or_die.h
	Timeout Mechanism
	GASPI Process Management
	GASPI Initialization
	GASPI Finalization
	GASPI Process Identification
	GASPI Startup
	GASPI Startup
	Build a GASPI program
	Hello world – Hands on
	GASPI „hello world“
	Memory Segments
	Segments
	Segments
	GASPI Segments
	Segment Functions
	GASPI Segment Allocation
	GASPI Segment Creation
	GASPI Segment with given Buffer
	GASPI Segment with given Buffer
	GASPI Segment Deletion
	GASPI Segment Utils
	GASPI Segment Utils
	Using Segments – Hands on
	Using Segments (I)
	Using Segments (II)
	One-sided Communication
	GASPI One-sided Communication
	GASPI One-sided Communication
	GASPI One-sided Communication
	Queues (I)
	Queues (II)
	Queues (III)
	GASPI Queue Utils
	GASPI Queue Utils
	GASPI Queue Utils
	write_and_wait
	write_notify_and_cycle
	wait_for_flush_queues
	Data Synchronization By Notification
	GASPI Notification Mechanism
	GASPI Notification Mechanism
	GASPI Notification Mechanism
	GASPI Notification Mechanism
	wait_or_die
	test_or_die
	Extended One-sided Calls
	GASPI extended one-sided
	GASPI extended one-sided
	GASPI extended one-sided
	GASPI extended one-sided
	Slide Number 81
	Communication – Hands on
	Communication – Hands on
	onesided.c (I)
	Slide Number 85
	GPI 2.0 - Bandwidth
	Collectives
	Collective Operations (I)
	Collective Operations (II)
	Collective Operations (III)
	Collective Functions
	GASPI Collective Function
	Passive communication
	Passive Communication Functions (I)
	Passive Communication Functions (II)
	Passive Communication Functions (III)
	Passive Communication Functions (III)
	Passive Communication Functions (IV)
	Fault Tolerance
	Features
	Interoperability with MPI
	Interoperability with MPI
	Mixing GASPI and MPI �in Parallel Programs
	GASPI Preserves the MPI Ranks
	Using User Provided �Memory for Segments
	Using GASPI Segment Allocated Memory in MPI Communication
	Mixing MPI Code with �GASPI Code From a Library
	The GASPI programming model
	Think performance
	Example: Stencil applications
	Stencil application proxy
	Stencil application proxy
	Iteration 1
	Iteration 2
	Iteration 3
	Iteration 4
	Slide Number 117
	Temporal evolution
	More than one process …
	Elementary update
	Boundary / Halo domains
	Slide Number 122
	Bulk Synchronous
	Communication phase
	Computation phase
	Communication phase
	Computation phase
	The GASPI Ring Exchange
	Excursion: Efficient parallel 								execution
	Efficient parallel execution
	Efficient parallel execution
	Scalability S
	Implications for parallelization
	Implications for parallelization
	End of Excursion
	Temporal evolution: one iteration
	Temporal evolution: one iteration
	Temporal evolution: all iterations
	CommUNICATION / computation overlap
	Strategy
	Strategy
	Single iteration
	Left boundary element:
	Left boundary element:
	Left boundary element:
	Left boundary element:
	Left boundary element:
	Single iteration
	Hands-on
	The GASPI Ring Exchange
	Temporal evolution
	Temporal evolution
	Data dependency Driven
	Slide Number 154
	Slide Number 155
	Reduce synchronicity
	Slide Number 157
	The GASPI Ring Exchange
	Hands-on
	The GASPI Ring Exchange
	Temporal evolution
	Slide Number 162
	GASPI at a Glance
	Questions?

