

traffic flow

- we want to predict traffic flow
- to look for effects such as congestion
- build a computer model

simple traffic model

- divide road into a series of cells
- either occupied or unoccupied
- perform a number of steps
- each step, cars move forward if space ahead is empty

could do this by moving
 pawns on a chess board

traffic behaviour

- model predicts a number of interesting features
- traffic lights

average
- congestion

> speed

- more complicated models are used in practice

Traffic simulation

- Update rules depend on:
- state of cell
- state of nearest neighbours in both directions

State Table

- If $R^{t}(i)=0$, then $R^{t+1}(i)$ is given by:
$-\quad R^{t}(i-1)=0$
- $R^{t}(i+1)=0$
0
$-R^{t}(i+1)=1$
0
$R^{t}(i-1)=1$
1
1
- If $R^{t}(i)=1$, then $R^{t+1}(i)$ is given by:

$$
\begin{array}{lcc}
- & R^{t}(i-1)=0 & R^{t}(i-1)=1 \\
- & R^{t}(i+1)=0 & 0 \\
-R^{t}(i+1)=1 & 1 & 0 \\
-
\end{array}
$$

how fast can we run the model?

- measure speed in Car Operations Per second
- how many COPs?
- around 2 COPs
- but what about th ee p eple?
- can they do six

Parallel Traffic Modeling

Pseudo Code: traffic on a roundabout

```
declare arrays old(i) and new(i), i = 0,1,...,N,N+1
initialise old(i) for i = 1,2,...,N-1,N (eg randomly)
loop over iterations
set old(0) = old(N) and set old(N+1) = old(1)
loop over i = 1,...,N
    if old(i) = 1
    if old(i+1) = 1 then new(i) = 1 else new(i) = 0
    if old(i) = 0
    if old(i-1) = 1 then new(i) = 1 else new(i) = 0
end loop over i
set old(i) = new(i) for i = 1,2,...,N-1,N
end loop over iterations
```

