
Non-Blocking

Communications

Deadlock

1

5
2

3

4

0 Communicator

Completion

The mode of a communication determines

when its constituent operations complete.
– i.e. synchronous / asynchronous

The form of an operation determines when the

procedure implementing that operation will

return
– i.e. when control is returned to the user program

Blocking Operations

Relate to when the operation has completed.

Only return from the subroutine call when the

operation has completed.

These are the routines you used thus far
– MPI_Ssend

– MPI_Recv

Non-Blocking Operations

Return straight away and allow the sub-program to

continue to perform other work. At some later time the

sub-program can test or wait for the completion of the

non-blocking operation.

Beep!

Non-Blocking Operations

All non-blocking operations should have

matching wait operations. Some systems

cannot free resources until wait has been

called.

A non-blocking operation immediately followed

by a matching wait is equivalent to a blocking

operation.

Non-blocking operations are not the same as

sequential subroutine calls as the operation

continues after the call has returned.

Non-Blocking Communications

Separate communication into three phases:

Initiate non-blocking communication.

Do some work (perhaps involving other

communications?)

Wait for non-blocking communication to

complete.

Non-Blocking Send

1

5
2

3

4

0 Communicator

Non-Blocking Receive

1

5
2

3

4

0 Communicator

Handles used for Non-blocking Comms

datatype same as for blocking
(MPI_Datatype or INTEGER).

communicator same as for blocking
(MPI_Comm or INTEGER).

request MPI_Request or INTEGER.

A request handle is allocated when a

communication is initiated.

Non-blocking Synchronous Send

 C:

int MPI_Issend(void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 Fortran:

 MPI_ISSEND(buf, count, datatype, dest,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

Non-blocking Receive

 C:

int MPI_Irecv(void* buf, int count,

 MPI_Datatype datatype, int src,

 int tag, MPI_Comm comm,

 MPI_Request *request)

int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 Fortran:

 MPI_IRECV(buf, count, datatype, src,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

Blocking and Non-Blocking

Send and receive can be blocking or non-

blocking.

A blocking send can be used with a non-

blocking receive, and vice-versa.

Non-blocking sends can use any mode -

synchronous, buffered, standard, or ready.

Synchronous mode affects completion, not

initiation.

Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

Completion

 Waiting versus Testing.

 C:

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 int MPI_Test(MPI_Request *request,

 int *flag,

 MPI_Status *status)

 Fortran:

 MPI_WAIT(handle, status, ierror)

 MPI_TEST(handle, flag, status, ierror)

Multiple Communications

Test or wait for completion of one message.

Test or wait for completion of all messages.

Test or wait for completion of as many

messages as possible.

Testing Multiple Non-Blocking Comms

 in

 in

 in

Process

Combined Send and Receive

Specify all send / receive arguments in one call
– MPI implementation avoids deadlock

– useful in simple pairwise communications patterns, but not as

generally applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 int dest, int sendtag,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag,

 MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,

 recvbuf, recvcount, recvtype, source, recvtag,

 comm, status, ierror)

Exercise

 Rotating information around a ring

See Exercise 4 on the sheet

Arrange processes to communicate round a ring.

Each process stores a copy of its rank in an integer

variable.

Each process communicates this value to its right

neighbour, and receives a value from its left neighbour.

Each process computes the sum of all the values

received.

Repeat for the number of processes involved and print

out the sum stored at each process.

Possible solutions

Non-blocking send to forward neighbour
– blocking receive from backward neighbour

– wait for forward send to complete

Non-blocking receive from backward neighbour
– blocking send to forward neighbour

– wait for backward receive to complete

Non-blocking send to forward neighbour

Non-blocking receive from backward neighbour
– wait for forward send to complete

– wait for backward receive to complete

Notes

Your neighbours do not change
– send to left, receive from right, send to left, receive from right, …

You do not alter the data you receive
– receive it

– add it to you running total

– pass the data unchanged along the ring

You must not access send or receive buffers

until communications are complete
– cannot read from a receive buffer until after a wait on irecv

– cannot overwrite a send buffer until after a wait on issend

