
Data Analytics with HPC

Hadoop 1: Map reduce

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Map Reduce pattern

•  Must provide stateless Map and Reduce functions:

•  Framework groups by Key2 before calling reducers
–  Only one reduce call for each unique Key2 key

•  To count words:

Input Output
Map <Key1 : Value1> List(<Key2 : Value2>)
Reduce <Key2 : List(Value2) > List(<Key3 : Value3>)

Input Output

Map <Integer : Text> List(<Word : Integer>)

Reduce <Word : List(Integer) > List(<Word : Integer>)

Input Output
Map <223, “shop at my shop”> [<shop,1>, <at,1>, <my,1>, <shop,1>]
Reduce <shop, [1,1]> [<shop, 2>]

Counting words with Map Reduce
Map Input Map Output
<0 : “A boy drove a car”> [<a,1>, <boy,1>, <drove,1>, <a,1>, <car,1>]
<1 : “A car drove at a bus”> [<a,1>, <car,1>, <drove,1>, <at,1>, <a,1>, <bus,1>]
<2 : “Can a boy drive a car?”> [<can,1>, <a,1>, <boy,1>, <drive,1>, <a,1>, <car,1>]
<3 : “A danger – a banana!”> [<a,1>, <danger,1>, <a,1>, <banana,1>]

Reduce Input Reduce output
<a,[1,1,1,1,1,1,1,1]> <a,8>

<at, [1]> <at,1>

<banana,[1]> <banana,1>

<boy, [1,1]> <boy,2>

<bus,[1]> <bus,1>

<can,[1]> <can, 1>

<car,[1,1,1]> <car, 3>

<danger,[1]> <danger,1>

<drive,[1]> <drive,1>

<drove,[1,1]> <drove,2>

Map Reduce exercise 1

•  From US National Bureau of Economic Research
–  http://www.nber.org/patents/ (Cite75_99.txt)

•  Lists patent IDs and the other patents they cite
“CITING”, “CITED”
3858241, 956203
3858241, 1324234
3858242, 1515701
3858244, 956203

•  Map Reduce task
–  Count the number of times each patent is cited
–  Tip: Do not need output for patents that are never cited
–  Tip: Reader is easily told to ignore the header row
–  Desired output:

956203, 2
1515701, 1
1324234, 1

Input Output
Map <Key1 : Value1> List(<Key2 : Value2>)
Reduce <Key2 : List(Value2) > List(<Key3 : Value3>)

Map Reduce exercise 1 answer

•  Reader: key/value pair both of type integer

•  Map: <Integer,Integer> à List(<Integer,Integer>)
–  Extracts the cited patent id and outputs it as key with value 1

•  Reduce <Integer,List(Integer)> à List(<Integer,Integer>)
–  Simply sums the values as outputs along with the input key

Map Input Map Output
<3858241, 956203> [<956203,1>]
<3858241, 1324234> [<1324234,1>]

Reduce Input Reduce output
<956203, [1, 1, 1, 1] > <956203, 4>

<13242434, [1, 1]> <13242434,2>

Map Reduce exercise 2

•  Same citation data set
“CITING”, “CITED”
3858241, 956203
3858241, 1324234
3858242, 1515701
3858244, 956203

•  Map Reduce Task:
–  Invert citation data set to get for each patent the list of patents that

cite it
–  Desired output:

956203, 3858241, 3858244
1515701, 3858242
1324234, 3858241

Map Reduce exercise 2 answer

•  Reader: key/value pair both of type integer

•  Map: <Integer,Integer> à List(<Integer,Integer>)
–  Extracts the cited patent id and outputs it as key with citing as value

•  Reduce <Integer,List(Integer)> à List(<Integer,String>)
–  Concatenates the values as strings and outputs along with the key

Map Input Map Output
<3858241, 956203> [<956203,3858241>]
<3858241, 1324234> [<1324234,3858241>]

Reduce Input Reduce output
<956203, [3858241, 3858244] > [<956203, “3858241, 3858244”>]

<13242434, [3858241]> [<13242434, “3858241” >]

Finding similar patents

•  Patent citation
records:
“CITING”, “CITED”
3858241, 956203
3858241, 1324234
3858242, 151570
3858244, 956203

•  How could you
identify similar
patents?

•  Patent data:

Finding similar patents with Map Reduce

Reduce Input Reduce Output
<“1111”, [“9999”, “2222”, “7777”] > [<“1111”, “9999, 2222, 7777”>]

•  Using ‘patents frequently cited together’ strategy

•  First gather all citations made by each patent:

Map Input Map Output
<“1111”, “9999”> [<“1111”, “9999”>]

•  Next count all pairs that are cited together

Map Input Map Output
<“1111”, “9999, 2222, 7777”> [<“2222+9999”, 1>, <“2222+7777”, 1> ,

 <“7777+9999”, 1>]

Reduce Input Reduce Output
<“2222+9999”, [1, 1, 1, 1] > [<“2222+9999”, 4>]

Finding similar patents with Map Reduce

Reduce Input Reduce Output
<“9999”, [“1111”, “3333”, “8888”] > [<“9999”, “1111, 3333, 8888”>]

•  Using ‘patents frequently citing same patents’ strategy

•  First gather all citations for each patent:

Map Input Map Output
<“1111”, “9999”> [<“9999”, “1111”>]

•  Next count all pairs that are cited together
Map Input Map Output
<“9999”, “1111, 3333, 8888”> [<“1111+3333”, 1>, <“1111+8888”, 1> ,

 <“3333+8888”, 1>]

Reduce Input Reduce Output
<“1111+3333”, [1, 1, 1, 1] > [<“1111+3333”, 4>

Map Reduce at scale

•  Stateless map and reduce functions allows massive
parallelisation

•  Between the Map and Reduce stages the grouping and
moving data stage can be expensive

Joining multiple data sets: Inner Join

Example from: Hadoop in Action, Chuck Lamb

Reduce side join: repartitioned join 1

•  Add a tag to
store data
source filename
along with each
record

Order and move

Reduce side join: repartitioned join 2

•  Reduce produces cross-
product of records with a
single instance of each
tag in each output

•  Second Mapper
implements join style
(inner, outer etc).

•  Hadoop has classes that
support such join patterns.

Map side join: replicated joins

•  Reduce-side joins require lots of expensive data transfer
in shuffle phase.

•  If joining one large dataset and one small dataset it may
be more efficient to move small dataset to all nodes and
then execute the join at the Map stage (and eliminate the
Shuffle and Reduce stages).

•  Hadoop provides a Distributed Cache to distribute files to
all nodes in the cluster.

Alternatives to replication join

•  Sometimes data sets are just too big for replication join

•  Reduce data transfer by map-side filtering
–  Reduce amount of data transfer by filtering to only those records of

interest, e.g. only those customers who live in Scotland.
– Note: applying such a filter may make the data set small enough

to use the replicated join strategy.
–  Replicate only the join keys rather than the whole records

–  Thus only data which will actually be joined is transferred
–  If join keys are still too large consider a smaller data structure that

gives an approximate answer, e.g. Bloom filter
–  BloomFilter.contains(x) – returns true if x is in the filter
–  BloomFilter.contains(x) – returns either true or false if x is not in

the filter.
–  Level of false positives related to the size of the filter.

Bloom filter

By David Eppstein - self-made, originally for a talk at WADS 2007, Public
Domain, https://commons.wikimedia.org/w/index.php?curid=2609777

